TDLAS能實現"原位、連續、實時測量",環境適應力強,易于設備的小型化。因此可以掙脫實驗室的束縛,在產業應用中大展拳腳。比如大氣環境在線監測、發動機效率檢測、汽車尾氣測量、工業過程氣體實時監測等等。TDLAS利用半導體激光器的波長調諧特性,可獲得被選定的待測氣體特征吸收峰的吸收光譜,從而對氣體定性或者定量的分析。每種氣體分子的吸收峰受其他氣體吸收干擾很小,所以也稱之為"分子的指紋峰"TDLAS技術簡單來說就是這些氣體"分子指紋"的識別系統,具有很強的選擇性。此外,TDLAS的檢測靈敏度也是較高的,不過檢出限能達到怎樣的量級,就和所用光源有著很大的關系。常見的污染氣體的"指紋峰"主要集中在4μm-10μm,基本是中紅外的天下,所以,作為中紅外激光光源的QCL,則可展現性能優勢。再加之高輸出功率,檢出限可達到ppb,甚至ppt級別。這比傳統的近紅外光源所能達到的水平,整整高出了3~6個量級。 基于光譜學原理的氣體檢測技術,有非接觸、快響應、高靈敏、大范圍監測等優點,是監測技術的主流研究方向。廣東H2OQCL激光器定制
紅外激光光譜學獨特的優勢以及在許多領域有著潛在的重要應用價值,是近年來非常熱門的研究領域之一。主要的應用有:(1)高選擇性,高分辨率的光譜技術,由于分子光譜的“指紋”特征,它不受其它氣體的干擾。這一特性與其它方法相比有明顯的優勢。(2)它是一種對所有在紅外有吸收的活躍分子都有效的通用技術,同樣的儀器可以方便的改成測量其它組分的儀器,只需要改變激光器和標準氣。由于這個特點,很容易就能將其改成同時測量多組分的儀器。(3)它具有速度快,靈敏度高的優點。在不失靈敏度的情況下,其時間分辨率可以在ms量級。應用該技術的主要領域有:分子光譜研究、工業過程監測控制、燃燒過程診斷分析、發動機效率和機動車尾氣測量、檢測、大氣中痕量污染氣體監測等。因此,可調諧紅外激光光譜新方法及其環境污染時空分布監測研究對國家可持續發展和解決環境領域中必不可少的監測分析新方法與新技術有重要的科學意義和實用價值。應用該技術的主要領域有:1、分子光譜研究:光譜結構、線寬、線強等;2、大氣痕量氣體檢測:CH2O、CH4、CO2、NH3等;3、工業過程監測控制:CO、CO2、H2O、NH3等;4、醫療診斷:NO、CO、CO2、CH4等;5、機動車尾氣測量:CO、CO2、NH3、NO等。 廣東國產QCL激光器批發DFB激光器能避免其他背景氣體的交叉干擾,使檢測系統具有較好的測量精度。
相比較與其它激光器,量子級聯激光器的優點如下:1)中遠紅外和太赫茲波段出射;在QCL發明之前,半導體激光器的發射波長主要在可見光和近紅外波段,當我們需要使用中遠紅外和太赫茲波段的激光時,半導體激光器對此則有些無能為力,不同體系激光器激射波長范圍如圖3。QCL的發明,使得半導體激光器也能激射出中遠紅外和太赫茲波段的激光。如圖3.不同激光器發光范圍[15]2)寬波長范圍;QCL激射波長取決于子帶間能量差,可以通過設計量子阱層厚度來實現波長控制,所以量子級聯激光器的激射波長范圍極寬(約3-250μm),并且可以根據實際需求設計特定波長的激光輸出。3)體積小;QCL相比其它激光器如:一氧化碳激光器(激射波長為4-5μm)和二氧化碳激光器(激射波長為μm),具有體積小、重量輕的特點,其攜帶方便,便于系統化和集成化。4)單極型結構;傳統結構半導體激光器為雙極型,其出光原理依靠的是p-n結中導帶電子和價帶空穴復合所產生的受激輻射,而QCL全程只有電子參與,空穴并未參與輻射發光過程,所以量子級聯激光器為單極型激光器,且其出射的激光具有很好的單向偏振性。5)高的電子利用效率;因為QCL所獨特的級聯結構,電子在參與完子帶間躍遷發光后,并沒有湮滅。
波長覆蓋范圍寬量子級聯激光器從波長設計原理上與常規半導體激光器不同,常規半導體激光器的激射波長受限于材料自身的禁帶寬度,而QCL的激射波長是由導帶中子帶間的能級間距決定的,可以通過調節量子阱/壘層的厚度改變子帶間的能級間距,從而改變QCL的激射波長。從理論上講,QCL可以覆蓋中遠紅外到THz波段。[2]單個激光器激射波長連續可調諧對于各種氣體的檢測,需要激光器的波長精確平滑地從一個波長調諧到另一個波長。對于特定氣體的檢測,波長更需要精確的調節以匹配其吸收線,也稱為分子“指紋”。另外,通過波長調節以匹配氣體的第二條吸收線,可以用來作為條吸收線是否正確的判斷標準。單個激光器的激射波長可以通過改變溫度和工作電流進行調諧,已有技術通過改變激光器的工作溫度,得到波長9μm激光器中心頻率,約為10cm-1。而使用外置光柵,可以得到更寬的波長調諧范圍。 激光氣體分析被用于各種氣體檢測研究。高精度和靈敏度使其成為研究氣體環境科學和物理化學性質的理想設備。
氣體分析儀主要利用激光光譜技術,通過氣體對特定波長的激光吸收特性來檢測氣體濃度。1.激光吸收光譜原理激光吸收光譜法基于不同氣體分子對特定波長的激光具有不同的吸收特性。當激光光束穿過氣體樣品時,特定氣體分子會吸收與其吸收光譜相匹配的激光波長。通過測量吸收后的激光強度變化,可以確定氣體的濃度。2.調諧二極管激光吸收光譜(TDLAS)調諧二極管激光吸收光譜(TDLAS)是激光氣體分析儀**常用的技術之一。其工作原理如下:激光光源:使用調諧半導體激光器作為光源,能夠在特定的窄波段范圍內快速調諧激光波長,精確匹配待測氣體的吸收峰。氣體吸收過程:激光器發射的窄帶單色激光穿過待測氣體樣品。由于特定氣體分子在特定波長處具有吸收峰,部分激光能量被吸收,導致光強度減弱。探測器測量:激光通過氣體后,剩余的激光光強被探測器接收。探測器將光信號轉換為電信號,測量激光強度的衰減。信號處理與濃度計算:分析儀通過計算吸收光譜的強度和形狀,使用朗伯-比爾定律(Beer-LambertLaw)來推導出氣體的濃度。TDLAS技術的高分辨率和高靈敏度使其能夠準確檢測低濃度的氣體。3.光聲光譜(PAS)光聲光譜(PhotoacousticSpectroscopy。 中紅外QCL-TDLAS在氣體檢測中具有高靈敏度、高分辨率及快速響應等優點。上海定制QCL激光器型號
基于光譜學原理的氣體檢測,有非接觸、快響應、高靈敏、大范圍監測等優點,是溫室氣體監測技術的主流方向。廣東H2OQCL激光器定制
量子級聯激光器(QuantumCascadeLaser)是一種能夠發射光譜在中紅外和遠紅外頻段激光的半導體激光器。它是由貝爾實驗室于1994年率先實現。隨著量子級聯激光器技術的日趨成熟,它開始被較多地應用于科學和工程研究。由于其明顯優勢,在氣體檢測領域得到了迅速推廣。基于量子級聯激光器的紅外光譜氣體檢測技術具有靈敏度高、檢測速度快等優點,特別是在高精度光譜檢測方面所具有的明顯優勢,使其成為研究和應用的熱點。量子級聯激光器(QuantumcascadeLaser,QCL)是基于半導體耦合量子阱子帶(一般為導帶)間的電子躍遷所產生的一種單極性光源。量子(quantum)指的是通過調整有源區量子阱的厚度可以改變子帶的能級間距,實現對波長的“裁剪”,另外也指器件的尺寸較小。級聯(cascade)的意思是有源區中上一組成部分的輸出是下一部分的輸入,一級接一級串聯在一起。激光器(Laser)是指產生特定波長的光源。量子級聯激光器的波長可以覆蓋在、通信、氣體檢測等領域極具應用價值的中遠紅外波段。 廣東H2OQCL激光器定制