量子級聯激光器輸出功率較高圖3量子級聯激光器有源區工作示意圖(兩個周期)比起中紅外波段其它光源,QCL的輸出功率較高。不同的激光氣體檢測應用中會需要不同的功率,故激光器的高功率工作是非常必要的。改變工作電流就可以改變激光器的輸出功率,高功率的激光器能夠提供的功率范圍大,可以滿足更多的應用場景。QCL輸出功率較高的原因可以歸結于其本身的有源區結構設計,其電子利用效率較高。內量子效率是指每秒注入有源區的電子-空穴對數能夠產生的光子數多少。圖3給出典型的QCL有源區工作示意圖,電子流通過一系列的子帶和微帶,實現子帶中的上能級電子的集聚,之后迅速躍遷到下能級并產生光子,之后注入區再重復利用電子流,使之進入下一個循環。理論上一個電子可以產生與有源區級數相同的光子數,從而內量子效率較高,輸出的功率也就越大。而常規的半導體激光器中,一個電子在與空穴相遇后輻射出一個光子。可室溫工作許多應用中需要激光器能室溫工作(室溫脈沖或室溫連續工作)。器件低溫工作時需將激光器放置在液氮制冷的杜瓦中,將增大系統體積,而且不利于激光器的光束整形。而常規半導體激光器中電子和空穴的分布對溫度十分敏感,在長波長區域。 TDLAS技術采用的半導體激光光源的光譜,寬度遠小于氣體吸收譜線的展寬,得到單線吸收光譜。廣西CH4QCL激光器型號
基于可調諧二極管激光吸收光譜(TDLAS)技術的在線監測系統,以其高靈敏度、高分辨率及實時響應的優勢,在環境監測領域展現出了廣闊的應用前景。本研究首先解析了TDLAS技術的基本原理,明確了其在氨逃逸檢測中的獨特作用機制,進而設計了包含穩定系統架構與精細功能模塊劃分的氨逃逸在線監測系統。在系統實現階段,通過精心挑選的硬件組件與優化的軟件算法,確保了系統的高效運行與準確監測。隨后,對系統進行了的性能測試,結果表明,該系統能夠實時監測并準確記錄氨逃逸數據,為環境保護與工業安全生產提供了有力的技術支持。本研究不僅豐富了TDLAS技術在環境監測領域的應用案例,也為氨逃逸監測技術的發展提供了新的思路與方向。未來,隨著技術的不斷進步與應用的持續拓展,TDLAS技術有望在更多領域發揮重要作用,推動環境監測技術的整體發展。 江西二氧化碳QCL激光器供應商基于光譜學原理的氣體檢測,有非接觸、快響應、高靈敏、大范圍監測等優點,是溫室氣體監測技術的主流方向。
紅外激光光譜學獨特的優勢以及在許多領域有著潛在的重要應用價值,是近年來非常熱門的研究領域之一。主要的應用有:(1)高選擇性,高分辨率的光譜技術,由于分子光譜的“指紋”特征,它不受其它氣體的干擾。這一特性與其它方法相比有明顯的優勢。(2)它是一種對所有在紅外有吸收的活躍分子都有效的通用技術,同樣的儀器可以方便的改成測量其它組分的儀器,只需要改變激光器和標準氣。由于這個特點,很容易就能將其改成同時測量多組分的儀器。(3)它具有速度快,靈敏度高的優點。在不失靈敏度的情況下,其時間分辨率可以在ms量級。應用該技術的主要領域有:分子光譜研究、工業過程監測控制、燃燒過程診斷分析、發動機效率和機動車尾氣測量、檢測、大氣中痕量污染氣體監測等。因此,可調諧紅外激光光譜新方法及其環境污染時空分布監測研究對國家可持續發展和解決環境領域中必不可少的監測分析新方法與新技術有重要的科學意義和實用價值。應用該技術的主要領域有:1、分子光譜研究:光譜結構、線寬、線強等;2、大氣痕量氣體檢測:CH2O、CH4、CO2、NH3等;3、工業過程監測控制:CO、CO2、H2O、NH3等;4、醫療診斷:NO、CO、CO2、CH4等;5、機動車尾氣測量:CO、CO2、NH3、NO等。
在當今高科技迅猛發展的時代,量子級聯激光器(QCL激光器)憑借其性能,越來越受到氣體檢測領域的關注。作為一種高靈敏度的激光器,QCL激光器能夠在極低濃度的氣體環境下進行準確檢測,為環境監測和工業應用提供可靠的數據支持。這一特性使得QCL激光器成為氣體分析的工具,尤其在安全監測和環境保護等領域,其應用價值不可小覷。QCL激光器的另一個優勢在于其強大的選擇性。與其他類型的激光器相比,QCL激光器能夠有效地區分不同氣體分子的吸收特性。這意味著在復雜的氣體混合環境中,QCL激光器能夠精確識別特定氣體的存在,從而減少誤報的可能性,極大地提高了檢測的可靠性和準確性。這種選擇性不僅提升了產品的市場競爭力,同時也為客戶帶來了更高的滿意度。 可調諧半導體激光吸收光譜(TDLAS)是一種 具有高分辨率、高靈敏度、快速檢測特點的氣體檢測 技術。
量子級聯激光器是基于多個量子阱異質結中掩埋次能級躍遷的單極半導體注入激光器,它們是通過能帶工程并通過分子束外延生長方法得到的。QCL激光器的輸出波長依賴于量子阱和作用區掩埋層的厚度而不是激光材料的能級。由于QCL輸出波長不受帶隙寬度的限制,因而能夠被制成在中紅外波長區較寬范圍里輸出。QCL的輸出波長區可以從μm到60μm,激光輸出功率可以達到幾個mW。QCL在脈沖工作方式下可以工作在室溫下,并且已經被用于痕量氣體的光譜檢測,但由于脈沖激光固有特點使其線寬相對較寬。雖然單模連續輸出DFB-QCL已早有報道,但到目前為止,還沒有痕量氣體檢測的報道。鑒于目前中紅外光譜區傳統激光技術存在的需要低溫制冷等限制,利用技術成熟的近紅外激光光源的參量頻率轉換實現室溫下連續波中紅外相干光源輸出是一個有效的補充。在中紅外光譜相干光輸出的參量過程主要有光參量振蕩(OPO)和差頻變換(DFG)。 可調諧半導體激光器調制光譜技術和二氧化碳檢測技術可以測得二氧化碳氣體濃度值。山西NOQCL激光器批發
中紅外光譜是分子的基頻吸收區,對痕量氣體具有極高的敏感度,這使得它成為溫室氣體監測的理想選擇。廣西CH4QCL激光器型號
隨著經濟的發展,人類對于大自然的干擾和對環境的破壞愈發嚴重,無論是酸雨等氣候災害、亦或是全球氣候變暖、還是霧霾現象頻發,都嚴重的影響著人們的生存環境。各國科學家對環境監控都十分重視。2008年,正值北京奧運會舉辦之際,美國普林斯頓科研小組利用量子級聯激光器搭建了開路式氣體檢測系統,對北京進行了空氣質量評估。“HIPPO”項目(由美國國家科學基金會(NSF)和美國國家海洋和大氣局(NOAA)支持)和“CalNEX”項目(由美國加州空氣資源局(CARB)和NOAA支持)正在開展溫室氣體的相關研究工作。[2]工業監控在石油化工、金屬冶煉、礦山開采等行業生產過程中,通過檢測產生的相應氣體的濃度可以進行進程監控,也可以監控泄露危險氣體的濃度,以保障生產安全,已有技術采用μmQCL對工業燃燒排氣系統中產生的NO氣體進行實時檢測,并使用μm的脈沖QCL對物產生的氣體進行光學檢測。醫學應用有的疾病會造成人類呼出氣體成分的異常升高,通過對呼出氣體的種類和濃度進行準確的分析,可以對臨床診斷和提供有價值的參考,而且不必因為使用CT等儀器而引入過多的輻射。例如,患有糖尿病、肝臟和腎臟疾病的患者呼出的氣體中NH3濃度會出現異常。 廣西CH4QCL激光器型號