在轉染實驗中使用對照對于確定所使用的轉染試劑和核酸的效果和效率至關重要。通常,質粒轉染和寡核苷酸轉染實驗都需要陽性對照、陰性對照、未轉染對照和模擬轉染對照。陽性對照是先前已被證明對轉染實驗產生已知影響的DNA或RNA,例如影響特定下游遺傳靶點的表達。在轉染工作的初始階段,需要一個陽性對照來建立一個優化的轉染方案,之后,陽性對照可以作為參考,與實驗組進行比較。另一方面,陰性對照用于確認宿主細胞中預期的基因表達變化是否歸因于轉染而不是其他原因。在質粒DNA轉染中,陰性對照可以是缺乏DNA和轉染載體的反應,或者兩者都沒有,只有宿主細胞。在小RNA轉染中,陰性對照包含一個非同源序列,該序列通常是一個與靶序列具有相同核苷酸長度和組成但與任何已知哺乳動物基因不同源的打亂序列。未轉染的對照包括不含轉染試劑和核酸的細胞培養,作為宿主細胞基本信息的對照,包括活力、表型,更重要的是,不受轉染影響的靶基因的基線表達水平。模擬轉染是指不含遺傳靶標或核酸的轉染,可以評估轉染試劑(如背景自熒光噪聲)產生的影響。在質粒轉染實驗中,推薦使用空質粒對照作為模擬轉染對照。選擇合適的轉染試劑可能取決于幾個因素,包括轉染核酸的類型和轉染的復雜性(單轉染或共轉染)。山東轉染試劑性價比高
脂質復合物(CLNACs)通過網格蛋白參與的內吞作用進入細胞,并被困在核內小體中,從這些囊泡結構中釋放出來,進入核周區域,***進入細胞核。內吞作用在一定程度上取決于脂質體載體的物理化學性質。Friend和同事描述了可能由脂質體與核膜融合而形成的囊泡和網狀核內膜。**近有研究表明,很大一部分從核內體釋放到細胞質質的質粒由于與細胞質中的大離子凝聚劑結合而失去活性。這可能解釋了脂質轉染所觀察到的低且可變的轉染率。雖然這些脂質載體從細胞外部到細胞核的路徑尚未完全確定,但核酸能夠產生其效果本身就是一項驚人的壯舉。至少對于質粒而言,較小的結構體比較大的質粒具有更高的轉染率。核酸外排,雖然不是常見的報道,但也被證明會發生。長沙轉染試劑現貨不同種類的納米顆粒轉染細胞系后,產生不同的效率、毒性和組織特異性。
PEI的分子量對細胞毒性和基因轉移活性有影響。由于PEI在細胞內不可降解,所以分子量越高,細胞毒性越強。此外,具有較高分子量的PEI形成更穩定的聚合物,使其更容易轉染,但更難在細胞內釋放核酸。另一方面,PEI產生的復合物分子量降低,更難以轉染;但它更容易釋放核酸。因此,確定哪種分子量的PEI更有利是不能隨意實現的。然而,一些改進使PEI在應用中更加先進。低分子量(LMW) PEI與可生物降解的骨架(如聚谷氨酸衍生物(PEG-b-PBLG))偶聯,可***降低細胞毒性并保持較高的轉染效率。通過用丙烯酸乙酯修飾胺,伯胺的乙?;蛟诰酆衔锝Y構中引入帶負電荷的丙酸或琥珀酸基團,可以制備出各種無毒的分支PEI衍生物。由此產生的化學物質在利用siRNA敲低靶基因方面非常成功。
Severinoetal.進行的研究也指出了陽離子脂質作為基因遞送納米載體的潛在毒性。他們成功實現了人動力蛋白的表達,但也證明了較高濃度的SLN仍然具有細胞毒性,并導致活細胞數量減少。另一組比較了DNA/DOTAP復合物和由魚精蛋白、DNA和脂質層組成的納米顆粒在不同細胞系上的轉染效率:CHO(中國倉鼠卵巢細胞)、HEK293(人胚胎腎細胞)、NIH3T3(小鼠胚胎成纖維細胞)和A17(小鼠*細胞)。魚精蛋白/DNA/脂質納米顆粒在每種細胞系中更有效地實現綠色和紅色熒光蛋白的表達,即使不同細胞系對轉染的敏感性不同。陽離子脂質的毒性作用使我們必須尋找另一種能夠取代它們的化合物。不同的β-氨基酯聚合物作為納米載體,成功地將hESC(人類胚胎干細胞)的轉染效率提高了四倍,同時保持較低的細胞毒性。這給我們帶來了希望,納米顆粒能夠與具有所需官能團的其他化合物的必要添加一起形成***有效的核酸遞送平臺。在轉染中,DNA通常通過病毒或非病毒載體(如質粒)轉運到宿主細胞中。
影響物理轉染或機械轉染效率的因素在很大程度上取決于這些方法的基本原理。例如,電穿孔技術依賴于電場來增加宿主細胞膜的通透性,以內化外來核酸。因此,電穿孔過程中的電壓和持續時間是決定電穿孔成功與否的重要因素。施加高壓的長時間電穿孔可能會導致細胞損傷并降低轉染效率。通過增加電脈沖的數量也可以提高電轉染效率,但這可能會降低細胞活力。另一方面,電轉染效率取決于所使用的細胞類型,每當要電轉染一種新的細胞類型時,應優化電穿孔條件。一些細胞如T淋巴細胞,即使在標準的電穿孔條件下也可能轉染不良,而電轉染成纖維細胞通??梢援a生良好的轉染結果。電穿孔緩沖液的組成是影響轉染效率的另一個關鍵參數。據報道,電穿孔緩沖液中的ATP酶抑制劑如利多卡因可提高電穿孔后的細胞活力,而使用K+-based緩沖液的轉染效率優于Mg2+-based緩沖液。假設Mg2+離子在***ATP酶以恢復電穿孔后的離子穩態中發揮關鍵作用,以比較大限度地減少細胞死亡,但可能會降低轉染效率。因此,應優化由多種成分組成的合適的電穿孔緩沖液配方,以確保轉染效率和電穿孔后細胞活力之間的平衡。小RNA和質粒DNA的共轉染可用于評估轉染效率。安徽shRNA轉染試劑
但似乎找到一種既能改善基因表達又不影響細胞、不對細胞造成損害的技術也至關重要。山東轉染試劑性價比高
PLL(聚L -賴氨酸)是生理條件下帶正電的多氨基酸,當鏈長超過20個殘基時,它可以與質粒DNA結合并凝聚成致密顆粒。研究人員發現,配體在PLL上的共價附著可通過受體介導的途徑***增強內吞作用。例如,涎腺樣體(ASOR)是涎腺糖蛋白受體的配體,在肝細胞上表達。當ASOR共價附著在PLL上時,受體介導的內吞作用和質粒的細胞攝取***增加。此外,與葉酸或轉鐵蛋白相關的PLL已被開發出來,并在將pDNAs轉染到*細胞中取得了實質性進展。另一種重要的聚氨基酸是PLO(聚L-鳥氨酸)。PLO具有PLL的特性,但轉染效率比PLL提高了10倍。Ramsay和Gumbleton證明,與PLL相比,PLO以更低的電荷(+/?)比率凝聚pDNA,并且在相同的多陽離子/pDNA質量比下,PLO/pDNA復合物比PLL/pDNA復合物更耐破壞。然而,由于其介導內體逃逸的能力較差,帶正電的多氨基酸的轉染效率仍然很低。山東轉染試劑性價比高