目前,LiDAR已普遍應用于各個領域。在大氣科學中,LiDAR被用于空氣質量監測和污染物檢測;在天文學領域,LiDAR技術可用于觀察行星表面地貌特征以及太陽系內其他天體的形態結構;在工程建設方面,利用LiDAR技術可以快速獲取地形數據、制作數字高程模型(DEM)以及生成精確的三維地圖;而在汽車領域中,人們普遍認為LiDAR是一項關鍵的光學距離感知技術,在自動駕駛領域得到了普遍應用。幾乎所有投入自動駕駛研發的廠商都將LiDAR視為一項關鍵技術,并且已經有一些低成本、小體積的LiDAR系統被應用于高級駕駛輔助系統(Advanced Driver Assistance Systems, ADAS)。覽沃 Mid - 360 混合固態技術,成就 360° 全向超大視場角優越性能。江蘇連續波激光雷達批發
泛光面陣式(FLASH),泛光面陣式是目前全固態激光雷達中較主流的技術,其原理也就是快閃,它不像 MEMS 或 OPA 的方案會去進行掃描,而是短時間直接發射出一大片覆蓋探測區域的激光,再以高度靈敏的接收器,來完成對環境周圍圖像的繪制。我們以目前較為成熟的車載 MEMS 式激光雷達為例,講解其關鍵的硬件參數。這主要是因為激光發射器和接收器不能做在一起導致的,此方案本身便存在小量的誤差。現在很多方案,都是向著共軸努力。激光雷達的測距精度,隨著距離的變化而變化。江蘇激光雷達批發Mid - 360 以 360°x59° 超廣 FOV,增強移動機器人復雜環境感知力。
20世紀90年代后期,全球定位系統及慣性導航系統的發展使得激光掃描過程中的精確即時定位定姿成為可能。1990年德國Stuttgart大學Ackermann教授領銜研制的世界上頭一個激光斷面測量系統,這一系統成功將激光掃描技術與即時定位定姿系統結合,形成機載激光掃描儀。1993年,德國出現初個商用機載激光雷達系統TopScanALTM1020。1995年,機載激光雷達設備實現商業化生產。此后,機載激光雷達技術成為了森林資源調查的重要補充手段。普遍應用于快速獲取大范圍森林結構信息,如樹木定位、樹高計算、樹冠體積估測等,同時還為森林生態研究、森林經營管理提供垂直結構分層、碳儲量、枯枝落葉易燃物數量等參數估算信息。
全固態激光雷達。顧名思義此激光雷達沒有任何機械擺動結構,自然也沒有旋轉。將機械化的激光雷達芯片化,體型更小、性能更好、壽命更可靠,但逃脫不了摩爾定律的軌道,目前有兩種方式。1. 光學相控陣式(OPA)固態激光雷達,OPA固態激光雷達完全沒有擺動固件,利用多個光源組成陣列,合成特定方向的光束,實現對不同方向的掃描。具有掃描速度快、精度高、可控性好、體積小(Quanergy激光雷達只有90x60x60mm)等優點,缺點是易形成旁瓣,影響光束作用距離和角分辨率,同時生產難度高。2.Flash固態激光雷達,Flash固態激光雷達,也可以說是非掃描式,它可以在短時間直接發射出一大片覆蓋探測區域的激光,利用光陣構建圖像,就像是照相機,快速記錄整個場景,減少了沒有了轉動與鏡片磨損,相對更為穩定,不過缺陷也很明顯,比如探測距離較近,對處理器要求較高,相對應成本也高。自動駕駛巴士借助激光雷達感知周邊,安全接送乘客。
半固態—MEMS式激光雷達,MEMS全稱Micro-Electro-Mechanical System(微機電系統),是將原本激光雷達的機械結構通過微電子技術集成到硅基芯片上。本質上而言MEMS激光雷達并沒有做到完全取消機械結構,所以它是一種半固態激光雷達。工作原理,MEMS在硅基芯片上集成了體積十分精巧的微振鏡,其主要結構是尺寸很小的懸臂梁——通過控制微小的鏡面平動和扭轉往復運動,將激光管反射到不同的角度完成掃描,而激光發生器本身固定不動。其次,MEMS的振動角度有限導致視場角比較小(小于120度),同時受限于MEMS微振鏡的鏡面尺寸,傳統MEMS技術的有效探測距離只有50米,FOV角度只能達到30度,多用于近距離補盲或者前向探測。激光雷達的維護簡單,降低了使用成本。覓道Mid-70激光雷達制造
智能停車系統憑借激光雷達檢測車位,實現快速引導。江蘇連續波激光雷達批發
根據發生器的不同可以產生紫外線(10-400nm)到可見光(390-780nm)到紅外線(760-1000000nm)波段內的不同激光,相應的用途也各不相同。激光是一種單一顏色、單一波長的光,激光雷達選用的激光波長一般不低于850nm,以避免可見光對人眼的傷害,而目前主流的激光雷達主要有905nm和1550nm兩種波長。905nm探測距離受限,采用硅材質,成本較低;1550nm探測距離更遠,采用昂貴的銦鎵砷(InGaAs)材質,激光可被人眼吸收,故可做更遠的探測光束。江蘇連續波激光雷達批發