3.1 化學蝕刻法化學蝕刻法是一種**為常用的 PCB 制版方法,廣泛應用于大規模生產中。其原理是利用化學蝕刻液對覆銅板上未被保護的銅箔進行腐蝕,從而形成所需的電路圖形。在具體操作時,首先要通過圖形轉移工藝,將設計好的電路圖案轉移到覆銅板上。這一過程通常采用光...
常見問題與解決方案地彈噪聲(Ground Bounce)原因:芯片引腳同時切換導致地電位波動。解決:增加去耦電容、優化地平面分割、降低電源阻抗。反射與振鈴原因:阻抗不匹配或走線過長。解決:端接電阻匹配(串聯/并聯)、縮短關鍵信號走線長度。熱應力導致的焊盤脫落原...
以實戰為導向的能力提升PCB培訓需以“理論奠基-工具賦能-規范約束-項目錘煉”為路徑,結合高頻高速技術趨勢與智能化工具,構建從硬件設計到量產落地的閉環能力。通過企業級案例與AI輔助設計工具的深度融合,可***縮短設計周期,提升產品競爭力。例如,某企業通過引入C...
散熱考慮:對于發熱量較大的元器件,如功率管、集成電路等,應合理布局并預留足夠的散熱空間,必要時可添加散熱片或風扇。抗干擾設計:合理布置地線和電源線,采用多點接地、大面積鋪銅等方法降低地線阻抗,減少電磁干擾。同時,對敏感信號線進行屏蔽處理。PCB布線:線寬和線距...
輸出生產文件生成Gerber文件(各層光繪文件)、鉆孔文件(NCDrill)、BOM表(物料清單)。提供裝配圖(如絲印層標注元件極性、位號)。二、高頻與特殊信號設計要點高頻信號布線盡量縮短走線長度,避免跨越其他功能區。使用弧形或45°走線,減少直角轉彎引起的阻...
PCB設計是一個綜合性的工作,涉及電氣、機械、熱學等多方面知識,旨在實現電子電路的功能并確保其可靠運行。以下是PCB設計的主要內容:一、前期規劃需求分析功能需求:明確電路板需要實現的具體功能,例如是用于數據采集、信號處理還是電源控制等。以設計一個簡單的溫度監測...
散熱考慮:對于發熱量較大的元件,如功率放大器、電源芯片等,要合理安排其位置,并留出足夠的散熱空間。可以采用散熱片、風扇等散熱措施,確保元件在正常工作溫度范圍內。機械約束考慮安裝尺寸:根據電路板的安裝方式(如插件式、貼片式)和安裝位置(如機箱內、設備外殼上),確...
電鍍過程需要嚴格控制電鍍液的成分、溫度、電流密度等參數,以確保銅層的厚度均勻、附著力強。銅層過薄可能會導致導電性能不佳,而銅層過厚則可能會增加成本并影響PCB的尺寸精度。電鍍完成后,還需要對銅層進行表面處理,如鍍錫、鍍金等,以提高銅層的抗氧化性和可焊性。外層線...
EMC與可靠性設計接地策略低頻電路采用單點接地,高頻電路采用多點接地;敏感電路(如ADC)使用“星形接地”。完整的地平面可降低地彈噪聲,避免大面積開槽或分割。濾波與防護在電源入口增加π型濾波電路(共模電感+X/Y電容),抑制傳導干擾。接口電路需添加ESD防護器...
可制造性設計(DFM)線寬與間距普通信號線寬≥6mil,間距≥6mil;電源線寬按電流計算(如1A/mm2)。避免使用過細的線寬(如<4mil),以免加工困難或良率下降。過孔與焊盤過孔孔徑≥0.3mm,焊盤直徑≥0.6mm;BGA器件需設計扇出過孔(Via-i...
散熱考慮:對于發熱量較大的元器件,如功率管、集成電路等,應合理布局并預留足夠的散熱空間,必要時可添加散熱片或風扇。抗干擾設計:合理布置地線和電源線,采用多點接地、大面積鋪銅等方法降低地線阻抗,減少電磁干擾。同時,對敏感信號線進行屏蔽處理。PCB布線:線寬和線距...
PCB制版是一個復雜且精細的過程,涉及多個關鍵步驟和技術要點。以下從流程、材料、關鍵技術及發展趨勢幾個方面展開介紹:一、PCB制版流程設計與規劃:運用電子設計自動化(EDA)軟件,根據產品功能需求設計電路原理圖,并在此基礎上進行PCB布局設計,合理安排元器件位...
可制造性設計(DFM)線寬與間距普通信號線寬≥6mil,間距≥6mil;電源線寬按電流計算(如1A/mm2)。避免使用過細的線寬(如<4mil),以免加工困難或良率下降。過孔與焊盤過孔孔徑≥0.3mm,焊盤直徑≥0.6mm;BGA器件需設計扇出過孔(Via-i...
孔壁鍍層不良:指PCB通孔電鍍過程中,孔內銅層出現空洞或不連續,可能由鉆孔質量問題、化學沉銅過程控制不當、電鍍參數不穩定等原因導致。解決方案包括采用高質量的鉆頭并定期更換,優化鉆孔參數,嚴格控制化學沉銅工藝,調整電鍍工藝參數等。短路和開路:短路可能由導體之間的...
EMC與可靠性設計接地策略低頻電路采用單點接地,高頻電路采用多點接地;敏感電路(如ADC)使用“星形接地”。完整的地平面可降低地彈噪聲,避免大面積開槽或分割。濾波與防護在電源入口增加π型濾波電路(共模電感+X/Y電容),抑制傳導干擾。接口電路需添加ESD防護器...
設計規則檢查(DRC)運行DRC檢查內容:線寬、線距是否符合規則。過孔是否超出焊盤或禁止布線區。阻抗控制是否達標。示例:Altium Designer中通過Tools → Design Rule Check運行DRC。修復DRC錯誤常見問題:信號線與焊盤間距不...
高密度互連(HDI)與先進封裝技術的融合:隨著消費電子微型化與高性能計算需求激增,HDI板、類載板(SLP)及IC載板的市場需求持續攀升。環保與可持續發展:在全球“雙碳”目標下,PCB行業環保壓力陡增,企業需采用無鹵素基材與低能耗壓合工藝,降低碳排放,并與下游...
PCB(Printed Circuit Board,印制電路板)制版是電子制造中的關鍵環節,其質量直接影響電子產品的性能和可靠性。以下是關于PCB制版的**內容,涵蓋流程、技術要點、常見問題及發展趨勢:一、PCB制版的基本流程設計階段使用EDA工具(如Alti...
4.4 成本控制在 PCB 制版過程中,成本控制是企業關注的重點之一。成本主要包括材料成本、制版成本、加工成本等多個方面。在材料選擇上,要在滿足性能要求的前提下,選擇性價比高的材料。例如,對于一些對性能要求不是特別高的消費類電子產品,可以選用普通的 FR - ...
外層制作:與內層制作類似,在外層銅箔上進行涂布感光膜、曝光、顯影、蝕刻、去膜等工藝,形成外層電路圖形。表面處理:常見方式有噴錫、沉金、OSP(有機保焊膜)等,目的是保護PCB表面銅箔,提高可焊性和抗氧化性。外形加工:使用數控銑床或沖床對PCB進行外形加工,使其...
關鍵設計原則信號完整性(SI)與電源完整性(PI):阻抗控制:高速信號線需匹配特性阻抗(如50Ω或75Ω),避免反射。層疊設計:多層板中信號層與參考平面(地或電源)需緊密耦合,減少串擾。例如,六層板推薦疊層結構為SIG-GND-SIG-PWR-GND-SIG。...
布線設計信號優先級:高速信號(如USB、HDMI)優先布線,避免長距離平行走線,減少串擾。電源與地線:加寬電源/地線寬度(如1A電流對應1mm線寬),使用鋪銅(Copper Pour)降低阻抗;地線盡量完整,避免分割。差分對布線:嚴格等長、等距,避免跨分割平面...
布線:優先布設高速信號(如時鐘線),避免長距離平行走線;加寬電源與地線寬度,使用鋪銅降低阻抗;高速差分信號需等長布線,特定阻抗要求時需計算線寬和層疊結構。設計規則檢查(DRC):檢查線間距、過孔尺寸、短路/斷路等是否符合生產規范。輸出生產文件:生成Gerber...
散熱考慮:對于發熱量較大的元器件,如功率管、集成電路等,應合理布局并預留足夠的散熱空間,必要時可添加散熱片或風扇。抗干擾設計:合理布置地線和電源線,采用多點接地、大面積鋪銅等方法降低地線阻抗,減少電磁干擾。同時,對敏感信號線進行屏蔽處理。PCB布線:線寬和線距...
常見問題與解決方案信號干擾原因:高頻信號與敏感信號平行走線、地線分割。解決:增加地線隔離、優化層疊結構、使用屏蔽罩。電源噪聲原因:去耦電容不足、電源路徑阻抗高。解決:增加去耦電容、加寬電源線、使用電源平面。散熱不良原因:功率器件布局密集、散熱空間不足。解決:添...
電磁兼容性(EMC)敏感信號(如時鐘線)包地處理,遠離其他信號線。遵循20H原則:電源層比地層內縮20H(H為介質厚度),減少板邊輻射。三、可制造性與可測試性設計(DFM/DFT)可制造性(DFM)**小線寬/間距符合PCB廠工藝能力(如常規工藝≥4mil/4...
電源完整性(PI)設計去耦電容布局:遵循“就近原則”,在芯片電源引腳附近放置0.1μF(高頻)和10μF(低頻)電容,并縮短回流路徑。電源平面分割:模擬/數字電源需**分割,避免交叉干擾;高頻信號需完整地平面作為參考。大電流路徑優化:功率器件(如MOS管、...
可制造性設計(DFM):線寬與間距:根據PCB廠商能力設置**小線寬(如6mil)與間距(如6mil),避免生產缺陷。拼板與工藝邊:設計拼板時需考慮V-CUT或郵票孔連接,工藝邊寬度通常為3-5mm。三、常見挑戰與解決方案高速信號的EMI問題:對策:差分信號線...
常見問題與解決方案信號干擾原因:高頻信號與敏感信號平行走線、地線分割。解決:增加地線隔離、優化層疊結構、使用屏蔽罩。電源噪聲原因:去耦電容不足、電源路徑阻抗高。解決:增加去耦電容、加寬電源線、使用電源平面。散熱不良原因:功率器件布局密集、散熱空間不足。解決:添...