高純鍺探測器應用方向對比P型,低能X射線檢測(如醫療設備),核素純度分析(如2?1Am)低能區靈敏度高,成本較低。N型,中高能γ核素識別(如13?Cs、??Co),核廢料分析寬能量范圍,分辨率優,抗干擾強。寬能型,環境輻射監測(多核素混合),核事故應急排查全能譜覆蓋,操作便捷。井型,放射***物活度測量(如131I),液體樣品(如地下水、生物體液)小樣品高效探測,適合低活度測量。平板型,地質樣品分析(巖石、礦石),大面積表面污染檢測高分辨率,適合不規則樣品。我司產品質保期通常為2年,供應商需提供安裝調試、技術培訓及遠程故障診斷服務?。防城港輻射測量液氮回凝制冷生產廠家液氮回凝制冷系統參數詳解一...
液氮回凝制冷系統**產品特點一、長效運行與輕量化結構設計?超長免維護運行?系統在電源穩定條件下可實現≥24個月連續運行,**支撐包括:?鋁合金罐體?(抗拉強度≥310MPa,密度2.7g/cm3)與玻璃鋼上蓋(彎曲模量≥12GPa)組合設計,較傳統不銹鋼結構減重40%,整機質量≤80kg,適配實驗室移動部署需求?13。?動態液氮回凝技術?(蒸發速率≤0.5L/日)結合斯特林制冷機(COP≥0.8),通過氣相再冷凝模塊將液氮年損耗率壓縮至≤2%?。?多場景適配能力?系統支持鉛屏蔽室集成安裝或**運行模式,接口兼容ISO-KF40法蘭標準,可快速對接鉛室(厚度≥5cm)實現輻射屏蔽(γ射線衰減率≥...
液氮回凝制冷系統**產品特點一、長效運行與輕量化結構設計?超長免維護運行?系統在電源穩定條件下可實現≥24個月連續運行,**支撐包括:?鋁合金罐體?(抗拉強度≥310MPa,密度2.7g/cm3)與玻璃鋼上蓋(彎曲模量≥12GPa)組合設計,較傳統不銹鋼結構減重40%,整機質量≤80kg,適配實驗室移動部署需求?13。?動態液氮回凝技術?(蒸發速率≤0.5L/日)結合斯特林制冷機(COP≥0.8),通過氣相再冷凝模塊將液氮年損耗率壓縮至≤2%?。?多場景適配能力?系統支持鉛屏蔽室集成安裝或**運行模式,接口兼容ISO-KF40法蘭標準,可快速對接鉛室(厚度≥5cm)實現輻射屏蔽(γ射線衰減率≥...
未來制冷技術將呈現多維度突破性發展,**方向聚焦以下領域:三、可持續能源融合?光儲直柔系統?光伏+儲能系統與直流制冷設備直連,能源轉換效率提升至98%(較傳統AC系統高15%)?。比亞迪冰蓄冷系統已實現谷電時段儲能,日間供冷成本下降60%?。?廢熱回收技術突破?熱泵系統在85℃溫差下的制熱COP達到3.8,將工業廢熱轉化為有效冷源,北京大興機場應用該技術后年減碳量達1.2萬噸?14。四、前沿技術探索?量子制冷?:利用拓撲量子材料實現毫開爾文級**溫環境,精度較傳統稀釋制冷機提升100倍?8?激光制冷?:在微尺度冷卻領域取得突破,可將芯片局部溫度控制在±0.01℃波動?全球制冷技術市場規模預計2...
未來制冷技術將呈現多維度突破性發展,**方向聚焦以下領域:三、可持續能源融合?光儲直柔系統?光伏+儲能系統與直流制冷設備直連,能源轉換效率提升至98%(較傳統AC系統高15%)?。比亞迪冰蓄冷系統已實現谷電時段儲能,日間供冷成本下降60%?。?廢熱回收技術突破?熱泵系統在85℃溫差下的制熱COP達到3.8,將工業廢熱轉化為有效冷源,北京大興機場應用該技術后年減碳量達1.2萬噸?14。四、前沿技術探索?量子制冷?:利用拓撲量子材料實現毫開爾文級**溫環境,精度較傳統稀釋制冷機提升100倍?8?激光制冷?:在微尺度冷卻領域取得突破,可將芯片局部溫度控制在±0.01℃波動?全球制冷技術市場規模預計2...
**產品的關鍵參數體系可從**性能、能效管理及可靠性設計三個維度展開分析:二、能效與容量設計?液氮存儲與續航?液氮罐容量28-30升,結合低蒸發率設計(干耗0.25%~0.5%),實現不斷電條件下近兩年的連續運行?。?功耗優化?典型功耗125W,最大負載300W,適配實驗室電網條件;模塊化設計可節能30%,平衡性能與能效?。三、可靠性保障?材料與結構?采用SUS316L不銹鋼主體與納米氣凝膠隔熱層,兼顧耐腐蝕性與熱損耗控制?。全氟醚橡膠(FFKM)密封系統,確保極端溫區下的氣密性?。?安全冗余?箱體外表面溫度≤室溫±5℃,防止冷凝與***風險;多重傳感器實時監控,實現過溫/過壓自動保護?。綜上...
液氮回凝制冷機的**原理與優勢可從以下維度展開分析:?一、**原理?液氮回凝制冷機以斯特林循環為基礎,通過熱力學逆向工程實現氣液轉化閉環。其**組件斯特林電制冷機通過兩個等溫過程和兩個等容回熱過程?,將杜瓦瓶內蒸發的氮氣(-196℃氣態)重新壓縮并冷凝為液態,形成自循環系統?。該過程包含四階段:壓縮機將低壓氣態氮增壓至臨界壓力,冷凝器通過熱交換釋放潛熱,膨脹閥控制液態氮回流速度,**終在蒸發器內通過相變吸熱完成制冷循環?。與傳統液氮罐被動蒸發不同,該系統通過動態壓力傳感器和液位監控軟件實現實時調節,使液氮利用率提升至95%以上?。??靜態消耗:系統處于停機狀態下,安裝的常規探測器時,靜態消耗≤...
液氮回凝制冷系統**產品特點二、智能監控與雙重安全保障?全參數可視化交互??10英寸工業觸控屏?(分辨率1280×800)實時顯示液位(0-100%精度±0.5%)、腔壓(量程0-300kPa)、剩余天數(基于消耗速率模型預測)等20項參數,支持閾值報警自定義(報警延遲≤1s)?。通過RS485/USB3.0接口連接PC端監控軟件,可遠程啟停設備、導出運行日志(存儲容量32GB),并實現OTA固件升級?。?冗余安全防護體系??雙級泄壓閥組?(機械閥+電磁閥聯動),一級閥動作閾值150kPa,二級閥閾值200kPa,雙重保障下腔體超壓風險趨近于零?。液氮補給日期自動標記功能,結合液位傳感器與計時...
高純鍺探測器技術發展趨勢1.智能化與便攜化:集成固態電制冷技術(無需液氮),結合AI算法實現自動能譜解析(如FYND-50L型號)。2.多場景適配:模塊化設計支持探測器類型快速切換(如井型與平板型組合)。3.高精度效率刻度:蒙特卡洛模擬(如GEANT4軟件)優化體源探測效率,減少實驗校準工作量。總結:高純鍺γ譜儀的類型選擇需以檢測目標為**,低能場景選P型,復雜能譜用N型或寬能型,小樣品優先井型,大樣本選平板型。未來隨著電制冷和數字化技術的普及,寬能型與便攜式設備將成為多領域主流,尤其在環境監測與核應急響應中優勢***。?配置斯特林制冷機,并輔助以多種減震措施。東莞泰瑞迅液氮回凝制冷維修安裝液...
液氮回凝制冷機的**原理與優勢可從以下維度展開分析:?一、**原理?液氮回凝制冷機以斯特林循環為基礎,通過熱力學逆向工程實現氣液轉化閉環。其**組件斯特林電制冷機通過兩個等溫過程和兩個等容回熱過程?,將杜瓦瓶內蒸發的氮氣(-196℃氣態)重新壓縮并冷凝為液態,形成自循環系統?。該過程包含四階段:壓縮機將低壓氣態氮增壓至臨界壓力,冷凝器通過熱交換釋放潛熱,膨脹閥控制液態氮回流速度,**終在蒸發器內通過相變吸熱完成制冷循環?。與傳統液氮罐被動蒸發不同,該系統通過動態壓力傳感器和液位監控軟件實現實時調節,使液氮利用率提升至95%以上?。?液位傳感器:提供液氮液位的連續測量,范圍為 0-100%,測量...
二、性能優勢??超長續航與節能特性?單罐28升液氮在回凝機制下可持續使用1年以上,較傳統液氮罐減少90%以上補液需求?。斷電情況下依靠杜瓦瓶真空絕熱層和殘余液氮,可維持-150℃低溫環境超過7天?,而普通液氮罐斷電后*能維持48-72小時?。?安全與可靠性提升?配備泄壓閥和雙冗余傳感器,工作壓力穩定在0.15-0.3MPa安全區間?。因制冷機與探測器采用非剛性連接設計,震動干擾降低60%以上?,避免傳統電制冷機因機械振動導致的元器件失效?。?運維成本優化?年化維護費用比傳統液氮罐降低75%,人工巡檢頻次從每周3次降至每月1次?。在核輻射檢測等高精度場景中,探測器維修周期從6個月延長至3年以上?...
對于半導體傳感器,常常需要工作在低溫狀態,如液氮溫區(-193℃)等,傳統產品常常使用液氮或液氮直接制冷,往往需要頻繁補充冷媒,造成人力物力的浪費。回凝制冷技術采用低溫制冷機,對消耗的液氮重新冷凝為液態,實現冷媒的循環利用。可以應用于核電、環保、食品、核應急、核工業、生物醫藥、**等領域,能夠產生良好的社會效益和經濟效益。液氮回凝制冷**部件包括斯特林制冷機和特質的鋁合金杜瓦,可以為HPGe探測器提供高可靠性的冷卻系統。這對于不便頻繁獲取液氮的實驗室特別有用。液氮回凝制冷可輕松安裝在標準鉛屏蔽體下方,占地面積與常規杜瓦瓶相同。對于不便頻繁獲取液氮的實驗室特別有用。防城港輻射監測液氮回凝制冷報價...
一、長效運行與液氮管理?超長補給周期?在探測器持續冷卻、液氮初始加注量飽和且系統真空度穩定(真空泄漏率≤1×10??Pa·m3/s)的條件下,液氮補充周期可達24個月以上。該性能依托多層絕熱結構(真空夾層導熱系數≤0.02W/m·K)與動態液氮回凝技術,將年蒸發損耗控制在≤3%,較傳統杜瓦瓶提升5倍續航能力?。靜態停機狀態下,系統液氮靜態消耗≤3升/日,通過電磁截止閥與真空維持模塊協同工作,確保非運行期液氮保存效率?。。可以為HPGe 探測器提供高可靠性的冷卻系統。陽江杜瓦罐液氮制冷液氮回凝制冷定制液氮回凝制冷系統的安全防護設計需通過多級保護機制實現風險防控,具體包含以下**模塊:五、應急處理...
液氮回凝制冷系統的安全防護設計需通過多級保護機制實現風險防控,具體包含以下**模塊:一、雙重壓力釋放系統?雙泄壓閥配置?主泄壓閥與備用泄壓閥采用差異化壓力閾值設計,主閥動作壓力設定為0.8MPa(±5%),備用閥設定為1.2MPa,形成梯度泄壓保護?。泄壓通道配備消聲器與冷凝回收裝置,確保壓力釋放時液氮氣化產物定向排放至室外安全區域?。二、智能監控與報警模塊?多參數實時監測?集成液位傳感器(誤差≤±2mm)、溫度探頭(-200℃~50℃量程)及壓力變送器(0-2MPa量程),實現三參數同步采集與異常狀態秒級響應?。當液位低于10%或壓力超過0.75MPa時,觸發聲光報警(105分貝/50米可視...
液氮回凝制冷系統參數詳解一、**配置與性能?大容量存儲設計?液氮罐容量為28L,采用多層真空絕熱結構(導熱系數≤0.02W/m·K),結合氣相/液相雙模式存儲技術,確保樣本保存溫差≤10℃,滿足生物樣本庫長期儲存需求?。配置斯特林制冷機(制冷功率≥50W@77K),通過主動減震模塊(橡膠阻尼+彈簧懸掛)將運行振動幅度壓制至≤5μm,有效保護精密實驗環境?。?低噪聲與高效能耗?系統全負載運行時1米處噪聲≤60dB,優于實驗室環境噪聲標準(ISO3744)?。電源適配220V交流(兼容50Hz),典型功耗125W(待機模式≤30W),最大功耗300W,能耗水平*為傳統機械制冷系統的1/5,***降...
高純鍺探測器技術發展趨勢1.智能化與便攜化:集成固態電制冷技術(無需液氮),結合AI算法實現自動能譜解析(如FYND-50L型號)。2.多場景適配:模塊化設計支持探測器類型快速切換(如井型與平板型組合)。3.高精度效率刻度:蒙特卡洛模擬(如GEANT4軟件)優化體源探測效率,減少實驗校準工作量。總結:高純鍺γ譜儀的類型選擇需以檢測目標為**,低能場景選P型,復雜能譜用N型或寬能型,小樣品優先井型,大樣本選平板型。未來隨著電制冷和數字化技術的普及,寬能型與便攜式設備將成為多領域主流,尤其在環境監測與核應急響應中優勢***。是否支持定制化設計?? 部分品牌提供冷指形狀(如L形、U形)、接口尺寸及低...
對于半導體傳感器,常常需要工作在低溫狀態,如液氮溫區(-193℃)等,傳統產品常常使用液氮或液氮直接制冷,往往需要頻繁補充冷媒,造成人力物力的浪費。回凝制冷技術采用低溫制冷機,對消耗的液氮重新冷凝為液態,實現冷媒的循環利用。可以應用于核電、環保、食品、核應急、核工業、生物醫藥、**等領域,能夠產生良好的社會效益和經濟效益。液氮回凝制冷**部件包括斯特林制冷機和特質的鋁合金杜瓦,可以為HPGe探測器提供高可靠性的冷卻系統。這對于不便頻繁獲取液氮的實驗室特別有用。液氮回凝制冷可輕松安裝在標準鉛屏蔽體下方,占地面積與常規杜瓦瓶相同。?液氮補充周期:當探測器處于冷卻狀態,并加滿液氮后,系統處于密封狀態...
液氮回凝制冷系統的安全防護設計需通過多級保護機制實現風險防控,具體包含以下**模塊:五、應急處理系統?緊急排空與消防?配置遠程控制排空閥,泄漏時可通過中控室一鍵啟動液氮快速排放程序(排放速率≥50L/min)?。操作區設置氧氣濃度監測儀與霧化水幕系統,缺氧或燃爆風險時自動啟動氮氣稀釋與水霧抑爆?。該防護體系通過機械泄壓、電子監測與物理隔離的協同作用,可有效防控液氮相變、設備過壓等6類典型風險,滿足GB50072-2021等標準對低溫制冷系統的安全要求?。?配置斯特林制冷機,并輔助以多種減震措施。福州輻射測量液氮回凝制冷適配進口探測器井型探測器(Well-Type)技術解析一、工作原理井型探測器...
液氮回凝制冷系統在高純鍺伽馬譜儀應用中具有以下性能優勢:?**本底封裝材料(銅、鋁、碳纖維)可定制,減少實驗本底干擾?。?環境適應性與安全性?工作溫度范圍寬(0-40℃),濕度適應性強(20%-90%無冷凝),噪聲低于60分貝?。配備雙泄壓閥、液位/溫度報警功能,避免因壓力失控或液氮泄漏引發事故?。?性能指標提升?維持探測器冷端溫度穩定在-196℃,保障高純鍺晶體全耗盡狀態,能量分辨率達0.05keV(@1.33MeV)?。對比純電制冷方案,液氮回凝系統低溫穩定性更優,尤其適用于長時間高精度核素分析場景?。?總結?:液氮回凝制冷以低消耗、高穩定性、強兼容性為**優勢,成為高純鍺伽馬譜儀性能優化...
高純鍺探測器應用方向對比P型,低能X射線檢測(如醫療設備),核素純度分析(如2?1Am)低能區靈敏度高,成本較低。N型,中高能γ核素識別(如13?Cs、??Co),核廢料分析寬能量范圍,分辨率優,抗干擾強。寬能型,環境輻射監測(多核素混合),核事故應急排查全能譜覆蓋,操作便捷。井型,放射***物活度測量(如131I),液體樣品(如地下水、生物體液)小樣品高效探測,適合低活度測量。平板型,地質樣品分析(巖石、礦石),大面積表面污染檢測高分辨率,適合不規則樣品。分辨率影響:配置原裝的探測器時,在能量高于100 keV時,探測器分辨率可以保證沒有下降。文成回凝制冷技術液氮回凝制冷價格二、性能優勢??...
寬能型探測器的原理與特點分析??原理?寬能型探測器通過?晶體結構優化?與?電場調控技術?實現寬能量范圍探測:?特點??效率均衡性?:低能區(<100 keV)探測效率≥85%,高能區(>1 MeV)效率≥30%,支持鈾、釷、鉀等混合核素同步檢測?。?環境適應性?:?寬動態范圍?:單次測量可覆蓋6個數量級能量跨度(如5 keV–10 MeV),適應輻射強度波動≥10?倍的復雜環境?。?抗干擾能力?:采用復合碳窗(0.6 mm厚度)屏蔽低能X射線干擾,確保高能γ射線有效穿透?6。?應用場景?:核環保監測中,可同步分析土壤中23?U(1.001 MeV)、232Th(2.614 MeV)及??K(1...
液氮回凝制冷系統的多品牌兼容性可通過以下技術方案實現:一、接口適配與定制化服務?冷指接口兼容范圍?主流系統支持31.5-33mm通用冷指接口,可適配ORTEC、CANBERRA等品牌探測器?。特殊型號(如J型低溫恒溫器)需定制L形或U形冷指,適配精度達±0.1mm?36。?結構兼容性擴展?Mobius系統提供頂部負載、側面插入等安裝模式,支持垂直型(如GMX系列)和水平型(如GWL系列)探測器低溫恒溫器?。國產LN-L-1型通過模塊化設計實現與J型冷指的一體化集成?。二、控制系統兼容優化?信號接口標準化?采用脈沖反饋前放接口,兼容阻容反饋型(如ORTEC676型)和數字譜儀(如DSA-LX系列...
如何選擇適配不同探測器的制冷系統需從以下維度綜合考量:一、接口匹配與結構設計制冷系統與探測器的適配性首先體現在冷指接口尺寸,例如通用型冷指適配31.5-33mm探測器接口,而GMX30-76-PL等**型號則需定制化設計?。特殊實驗場景下,L形冷指可滿足縱向空間受限的核廢料檢測需求,U形冷指則適用于多通道同步采樣的光譜分析系統?。二、制冷原理與溫度控制對于高精度探測場景(如高純鍺探測器),液氮回凝制冷系統通過斯特林循環實現氣態氮再冷凝,可在-196℃下維持±0.5℃的溫度穩定性?。混合制冷技術(如SIM-MAXLN-C型)結合液氮直冷與電制冷優勢,使系統在斷電后仍能保持72小時以上的低溫維持能...
高純鍺探測器應用方向對比P型,低能X射線檢測(如醫療設備),核素純度分析(如2?1Am)低能區靈敏度高,成本較低。N型,中高能γ核素識別(如13?Cs、??Co),核廢料分析寬能量范圍,分辨率優,抗干擾強。寬能型,環境輻射監測(多核素混合),核事故應急排查全能譜覆蓋,操作便捷。井型,放射***物活度測量(如131I),液體樣品(如地下水、生物體液)小樣品高效探測,適合低活度測量。平板型,地質樣品分析(巖石、礦石),大面積表面污染檢測高分辨率,適合不規則樣品。對于不便頻繁獲取液氮的實驗室特別有用。洞頭區低溫制冷機液氮回凝制冷研發如何選擇適配不同探測器的制冷系統需從以下維度綜合考量:三、材料與工藝...
液氮回凝制冷系統的日常維護需重點關注液氮管理、硬件維護及安全防護三個維度:一、液氮管理規范?液位監測與補充?每月定期檢查液位,保持液氮容量在總容量的30%-50%區間,低于20%需立即補充?。補充前需釋放系統壓力至≤0.05MPa,采用**液氮輸送管道緩慢加注(流速≤5L/min),避免溫度驟變導致罐體應力損傷?。補充后需靜置15-30分鐘,待壓力穩定后再啟動系統?5。?存儲與環境控制?液氮罐應直立放置于通風良好區域(氧氣濃度≥19.5%),避免陽光直射且環境溫度≤40℃?5。液氮罐頸塞需保持適當間隙,嚴禁完全密封以防止氣化壓力積聚引發風險?。?實時顯示運行狀態及運行參數。瑞安輻射測量液氮回凝...
液氮回凝制冷故障報警的應對措施需根據具體報警類型采取針對性解決方案,以下為系統性應對策略:一、液位報警處理方案?密封性檢測與補液?當液位傳感器觸發低液位報警時,優先檢查杜瓦瓶、管道接頭及閥門密封性,使用氟橡膠密封圈更換老化部件(耐低溫性能需滿足-196℃工況)?。補充液氮時需確保液位恢復至60%以上安全區間,避免因液氮不足導致制冷循環中斷?。?智能調節系統介入?通過HMI觸摸屏將制冷功率從100%逐步下調至50%-70%,降低液氮蒸發速率?。同時***備用液氮儲存罐自動切換功能,確保連續供液?。功耗:典型值 125 W,最大值為 300W。龍灣區杜瓦罐液氮制冷液氮回凝制冷定制**產品的關鍵參數...
寬能型探測器的原理與特點分析??原理?寬能型探測器通過?晶體結構優化?與?電場調控技術?實現寬能量范圍探測:?特點??效率均衡性?:低能區(<100 keV)探測效率≥85%,高能區(>1 MeV)效率≥30%,支持鈾、釷、鉀等混合核素同步檢測?。?環境適應性?:?寬動態范圍?:單次測量可覆蓋6個數量級能量跨度(如5 keV–10 MeV),適應輻射強度波動≥10?倍的復雜環境?。?抗干擾能力?:采用復合碳窗(0.6 mm厚度)屏蔽低能X射線干擾,確保高能γ射線有效穿透?6。?應用場景?:核環保監測中,可同步分析土壤中23?U(1.001 MeV)、232Th(2.614 MeV)及??K(1...
平板型探測器(Planar)基于鍺晶體的平面結構設計,通過半導體技術將入射X射線直接轉換為電信號,適用于大面積或表面不均勻樣品的測量?。其**原理在于鍺晶體材料的特性:當X射線照射到晶體時,能量被吸收并產生電子-空穴對,電荷云的分布與X射線位置相關,通過電極感應形成電信號,再經模數轉換生成數字圖像?。平面結構的優勢在于能夠覆蓋較大檢測區域,且對樣品表面形貌的適應性較強,尤其適合地質、環境領域中巖石或土壤等復雜樣品的分析?。該探測器的***特點是能量分辨率極高(如≤0.70keV@122keV),這得益于鍺晶體對X射線能量的高效響應以及直接轉換機制減少了信號損失?。然而,平面結構的幾何設計限制了...
液氮回凝制冷系統的日常維護需重點關注液氮管理、硬件維護及安全防護三個維度:一、液氮管理規范?液位監測與補充?每月定期檢查液位,保持液氮容量在總容量的30%-50%區間,低于20%需立即補充?。補充前需釋放系統壓力至≤0.05MPa,采用**液氮輸送管道緩慢加注(流速≤5L/min),避免溫度驟變導致罐體應力損傷?。補充后需靜置15-30分鐘,待壓力穩定后再啟動系統?5。?存儲與環境控制?液氮罐應直立放置于通風良好區域(氧氣濃度≥19.5%),避免陽光直射且環境溫度≤40℃?5。液氮罐頸塞需保持適當間隙,嚴禁完全密封以防止氣化壓力積聚引發風險?。液氮回凝系統與傳統液氮罐相比無需頻繁加注液氮,斷電...
液氮回凝系統的**應用場景覆蓋多個高技術領域,其低溫穩定性與高效制冷特性在以下場景中尤為關鍵:三、野外移動檢測與應急響應?便攜式設備應用?集成液氮自循環模塊的便攜檢測儀(如***-1系列),可在斷電后維持48小時以上低溫運行,滿足核污染現場、礦區放射性物質的快速篩查?。搭配移動制氮機組,實現偏遠地區液氮原位制備與補給,適應***偵察、災害救援等場景需求?。四、材料科學研究?極端條件模擬?支持超導材料臨界溫度測試(如釔鋇銅氧體系),實驗溫度控制精度達±0.1K,為新型超導材料研發提供數據支撐?。在低溫力學實驗中,模擬航天材料在-180℃下的抗脆裂性能,優化鋁合金、復合材料的低溫適應性?。該系統通...