PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑...
活性炭過濾法憑借其長效穩定的特性,成為家庭日常用水除氯的理想之選。活性炭擁有極為豐富的多孔結構,這些密密麻麻的孔隙就如同一個個微小的 “陷阱”,能夠高效地吸附氯氣以及水中的其他雜質。我們可以將活性炭裝入特制的過濾裝置,比如用絲襪包裹燒烤炭(以黃豆粒大小為宜)自...
微電極的工作面積十分微小,其電極面積大小界限雖不十分嚴格,但這種小尺寸特性賦予了它獨特優勢。一方面,微電極實現了電極的微型化,在一些對空間要求極高的微納器件或生物體內檢測場景中,能輕松適配。另一方面,在電化學分析中,盡管整個電極并非微型化,但其極小的工作面積可...
SWRO工藝產生的濃鹽水Cl?濃度達35g/L,直接排放會危害海洋生態。某項目采用"電滲析-分質結晶"技術:先用選擇性陰膜(如ACS)分離Cl?/SO?2?,Cl?濃縮至80g/L后進入電解槽生產NaOH和Cl?;剩余Na?SO?溶液蒸發結晶純度達99.9...
源力循環水同步除氯除硬系統,采用前沿電化學技術,搭配自主研發的MOC高效電極與復合結構設計,以酸堿分離的方式同步去除循環水中的氯離子和鈣鎂離子,將循環水濃縮倍數提升至10倍以上,大幅減少排污量和補水量,取代藥劑法和低效電化學除垢工藝。 同步除氯除硬:...
工業廢水成分復雜,常含有毒、難降解有機物(如酚類、染料、農藥),而電氧化技術對此類污染物表現出獨特優勢。例如,在焦化廢水處理中,采用Ti/SnO?-Sb?O?電極可將苯酚濃度從500 mg/L降至5 mg/L以下,COD去除率達85%。對于印染廢水,電氧化能同...
反滲透(RO)膜對Cl?的截留率受膜材料、壓力和水質影響。聚酰胺復合膜(如BW30-4040)在1.5MPa下對500mg/L NaCl溶液的脫鹽率為98.5%,但Cl?實際透過量仍達7.5mg/L。海水淡化中,Cl?濃度超過1000mg/L時膜通量衰減速率增...
循環水系統的腐蝕與結垢往往并存,電化學方法可通過調控水質穩定性指數(LSI)實現雙重控制。陽極生成氧化性物質(如ClO?)抑制腐蝕菌,而陰極反應生成的OH?與HCO??結合生成CO?2?,優先與Ca2?形成可排垢層。采用Ti/Pt陽極與316L不銹鋼陰極組合時...
氯離子與Ca2?、Mg2?等形成的沉積物(如CaCl?·6H?O)會明顯降低換熱系數。實測數據顯示,當管壁結垢厚度達1mm時,蒸汽機組熱效率下降8%,相當于年多耗標煤1500噸(損失¥120萬)。且氯鹽垢層疏松多孔,更難通過常規化學清洗去除。 氯離子...
熱分解法是制備鈦電極常用的方法之一。該方法首先將含有活性金屬元素的有機鹽或無機鹽溶液涂覆在鈦基體表面,然后通過高溫熱處理使涂層發生分解反應,形成具有電催化活性的金屬氧化物涂層。在制備鈦基二氧化釕電極時,通常采用四氯化釕的乙醇溶液作為涂液,將其均勻涂覆在經過預處...
電極材料是電氧化技術的重要部分,其催化活性、穩定性和成本直接決定應用可行性。目前研究較多的包括金屬氧化物電極(如Ti/RuO?、Ti/PbO?)、BDD電極及碳基電極(如石墨、碳氈)。Ti/RuO?電極具有高析氧電位(1.6 V vs. SHE),適合處理含氯...
煮沸法是一種傳統但十分高效的除氯方法。當對自來水進行加熱時,水中的氯氣會受熱分解并逐漸揮發出去。不過,需要注意的是,完全煮沸后的水,其溶氧會有所降低,所以對于養魚等對溶氧要求較高的場景,在使用煮沸除氯后的水時需格外謹慎。在日常生活中,將水煮沸不僅能夠除去余氯,...
植物學實驗室的檢測結果表明,直接用自來水澆花,水中的氯殘留量可高達 0.3mg/L,這一數值是植物耐受極限的 6 倍之多。氯氣對植物的危害不容小覷,它會損害植物的根系,導致根系活力大幅下降。例如,用含有 0.3mg/L 氯的水澆灌植物 7 天,根系活力就會下降...
電極電氧化是一種通過陽極表面直接或間接氧化降解污染物的電化學技術。其機制包括兩種路徑:一是污染物在陽極表面直接失去電子(直接氧化),二是陽極生成強氧化性活性物種(如羥基自由基·OH、活性氯等)引發間接氧化。以硼摻雜金剛石(BDD)電極為例,其寬電位窗口(>2....
金屬氧化生成的腐蝕產物(如Fe?O?、γ-FeOOH)本身具有半導體特性,其禁帶寬度影響電子轉移效率。例如α-Fe?O?(Eg=2.2eV)比γ-Fe?O?(Eg=2.0eV)更穩定。這些氧化物還可能參與光電化學反應,在光照條件下產生額外光電流,導致傳統電...
金屬氧化生成的腐蝕產物(如Fe?O?、γ-FeOOH)本身具有半導體特性,其禁帶寬度影響電子轉移效率。例如α-Fe?O?(Eg=2.2eV)比γ-Fe?O?(Eg=2.0eV)更穩定。這些氧化物還可能參與光電化學反應,在光照條件下產生額外光電流,導致傳統電...
對于養魚愛好者而言,自來水除氯是保障魚兒健康的關鍵一步。自來水中的氯氣就像是隱藏在暗處的 “毒藥”,時刻威脅著魚類的健康。它會逐漸侵蝕魚體表面的粘液保護層,使魚失去這層重要的保護屏障,進而極易受到細菌、病毒等有害微生物的侵害。例如,柱狀黃桿菌就會趁虛而入,引發...
物理加速法能快速除氯,可謂除氯 “黑科技”。氣泵曝氣法利用氣泵連接氣盤放入水中,持續打氣。在夏季,打氣 4 - 5 小時,水中氯氣就能大幅減少;冬季則需 8 - 10 小時。這是因為氣泵工作時,不斷向水中注入空氣,增加了水與空氣的接觸面積和頻率,加速了氯氣的揮...
通過蒸發和蒸餾的方法也可以從水或廢水中對氯離子進行去除。在蒸發過程中,水會變成蒸汽上升,而氯化物等污染物則會留在剩余的液體中;蒸餾機械通過精確地控制溫度等條件,能夠幾乎完全去除水中的氯化物。從蒸發和蒸餾過程中,可以獲得高純度的餾出物,蒸發器的維護需求相對膜系統...
含氯溶液中的氯離子對農作物的生長有著嚴重的危害。高濃度的氯離子會損害農作物的根系,影響根系對水分和養分的吸收,導致植株矮小、葉片發黃、生長緩慢,嚴重時甚至會導致農作物死亡。例如,一些靠近工業排放源的農田,由于灌溉水的含氯量過高,農作物的產量和品質都受到了極...
金屬氧化生成的腐蝕產物(如Fe?O?、γ-FeOOH)本身具有半導體特性,其禁帶寬度影響電子轉移效率。例如α-Fe?O?(Eg=2.2eV)比γ-Fe?O?(Eg=2.0eV)更穩定。這些氧化物還可能參與光電化學反應,在光照條件下產生額外光電流,導致傳統電...
微生物腐蝕的協同惡化Cl?是嗜鹽菌(如Halomonas)生長的必需元素,其存在導致:生物膜厚度增加3倍,形成缺氧腐蝕微環境垢下Cl?濃度可達本體水的20倍(局部腐蝕速率>3mm/年)常規殺菌劑穿透生物膜效率下降70%某煉油廠循環水系統在Cl?>400mg...
煮沸除氯法是處理嬰兒用水的一種常用且有效的方法。將自來水放入干凈的容器中,加熱至沸騰,并保持 3 - 5 分鐘,這樣大部分的氯會隨著水蒸氣揮發出去。待水自然冷卻后,就可以用于沖調奶粉、制作輔食或者給嬰兒洗澡了。這種方法操作簡單便捷,不需要額外的設備,能夠有...
利用熱水器里剩余的水,或者用壺燒水,也能夠實現除氯。在加熱的過程中,氯氣會受熱分解并揮發出去。不過,使用熱水器剩余水時,要注意水溫是否合適;用壺燒水時,要注意水燒開后不要長時間保溫,以免水中的其他成分發生變化,影響水質。 用空氣泵連續打氣一天,通過曝...
循環水中的氯離子(Cl?)會破壞碳鋼表面的鈍化膜,引發局部腐蝕。當Cl?濃度超過300mg/L時,其半徑小(0.181nm)的特性使其易穿透氧化膜缺陷處,與Fe2?形成可溶性FeCl?,加速金屬溶解。某石化企業數據顯示,Cl?從200mg/L升至500mg...
如果含氯廢水在未經處理的情況下直接排入自然的水源之中,將會帶來極大的危害。氯離子會嚴重惡化水質,對漁業生產和水產養殖造成嚴重影響,導致減產甚至絕收。同時,氯離子還具有很強的腐蝕性,會對鋼鐵等金屬管道造成腐蝕,使管道的耐久性降低,明顯縮短其使用壽命。例如,一些工...
電極電氧化是一種通過陽極表面直接或間接氧化降解污染物的電化學技術。其機制包括兩種路徑:一是污染物在陽極表面直接失去電子(直接氧化),二是陽極生成強氧化性活性物種(如羥基自由基·OH、活性氯等)引發間接氧化。以硼摻雜金剛石(BDD)電極為例,其寬電位窗口(>2....
PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑...
一般循環水管壁的生物膜難以通過常規殺菌劑清洗,電化學生成的氫氧自由基(·OH)可氧化破壞生物膜胞外聚合物(EPS),實現物理剝離。采用脈沖電解模式(頻率100 Hz,占空比50%)時,鈦基電極產生的·OH能滲透至生物膜深層,剝離效率比連續電解提高40%。某制藥...
高鹽循環水易導致設備腐蝕和結垢,電化學離子交換(EDI)技術結合離子交換樹脂與直流電場,可連續脫除Ca2?、Mg2?和Cl?等離子。以填充混床樹脂的電滲析模塊為例,在15 V電壓下,硬度離子去除率>90%,產水電阻率可達5 MΩ·cm。相比傳統離子交換,EDI...