離子氮化技術的起源可回溯到 20 世紀 30 年代,當時德國科學家伯恩施坦初次提出了離子氮化的概念。但受限于當時的技術條件,早期發展緩慢。直到 50 年代末至 60 年代初,隨著真空技術和電源技術的進步,離子氮化設備逐漸完善,該技術才開始進入實際應用階段。在隨后的幾十年里,離子氮化技術不斷改進和創新。從初簡單的直流離子氮化,發展到脈沖離子氮化,有效解決了傳統直流離子氮化中存在的空心陰極效應等問題,提高了氮化質量和效率。同時,設備的自動化程度不斷提高,工藝控制更加精確,應用領域也從初的機械制造行業,逐步拓展到航空航天、汽車、模具等眾多領域,成為一種廣泛應用且不斷發展的表面處理技術。離子氮化件常見缺陷與對策。汕頭離子氮化的操作方法
離子氮化工藝技術應用案例:曲軸的離子氮化工藝流程:毛胚檢驗、寫編號、鉆兩端面中心孔、車大頭外圓及端面、粗車主軸頸及小頭、打編號、粗車主軸頸、大小頭及小頭倒角、銑定位面、精洗連桿頸、車大頭工藝外圓及平衡塊外圓、粗磨連桿頸、鉆橫油孔、鉆斜油孔、斜油孔攻絲及油孔倒角、打磨棱角毛刺、平小頭端面,精車小頭并攻絲、粗車大頭孔、半精磨主軸頸及大頭外圓、精車軸承孔、半精磨連桿頸、精磨連桿頸、鉆法蘭孔并攻絲、精磨小頭、銑鍵槽、動平衡、去重、精磨大頭外圓及端面、油孔口倒角并研磨、清洗、打熱處理批號、離子氮化熱處理、檢查跳動量、手攻絲、油孔口拋光、軸頸拋光、探傷、清洗、檢驗、清洗、涂蝕、包裝。江門離子氮化作用離子滲氮又稱輝光滲氮,是利用輝光放電原理進行的。
離子氮化能有效提高金屬的疲勞強度,延長金屬材料的使用壽命。金屬在交變載荷作用下,表面容易產生疲勞裂紋,終導致材料失效。離子氮化形成的氮化層存在殘余壓應力,這一壓應力可抵消部分交變載荷產生的拉應力,從而延緩疲勞裂紋的萌生和擴展。例如,彈簧鋼經離子氮化處理后,疲勞壽命可提高數倍。在機械傳動部件中,如傳動軸,離子氮化處理使其能更好地承受頻繁的啟動、停止和變速等交變載荷,降低疲勞斷裂的風險,為機械裝備的長期穩定運行提供了可靠保障。
離子氮化后零件的“腫脹”現象及防治對策:“腫脹”的本質。離子氮化后零件的“腫脹”實際上是零件尺寸變化的一種表現形式。尺寸變化是由于氮化時工件表面吸收了大量的氮原子,生成各種氮化物或工件表層原始組織的晶格常數增大所致,宏觀上則表現為表層體積的略微增加。氮化后零件的“腫脹”是一種普遍現象。各種氮化方法(氣體氮化、液體氮化和離子氮化)處理后的零件或多或少總會存在一定的“腫脹”。但應該說明的是:離子氮化后零件的“腫脹量”較其它氮化方法要小。這是因為:離子氮化中的“陰極濺射”有使尺寸縮小的作用,因而抵消了一部分氮化“腫脹量”。離子氮化是利用輝光放電原理進行的一種化學熱處理,故又稱輝光離子氮化,也有稱離子轟擊氮化。
離子氮化減小變形的方法。1.根據工件的服役條件,正確選用材料。避免因追求工件性能而盲目使用“好”材料(高合金鋼)的現象。2.根據工件的服役條件,提出合理的氮化要求,避免片面追求氮化層深度和硬度的現象。3.正確做好氮化前的預先熱處理工作和“穩定化"處理,預先熱處理工藝參數的制定必須正確,操作必須合理。對形狀復雜的零件,在精加工前必須進行一次或幾次“穩定化”處哩。4.在工藝允許的前提下,適當降低氮化溫度,縮短氮化時間。5.在保證氮化層性能的前提下,調整氮化氣氛。6.合理裝爐,確保同爐工件溫度的均勻性。離子氮化與氣體氮化相比具有氮化時間快,氮化層脆性小,硬度高,節約氨氣用量等優點。珠海高速鋼離子氮化和氣體氮液的區別
離子氮化硬度和深度。汕頭離子氮化的操作方法
離子氮化具有諸多工藝特點。首先,氮化速度快,相比傳統氣體氮化,其氮化時間可縮短 1/3 - 1/2。這是因為離子氮化過程中,氮離子直接轟擊工件表面,加速了氮原子的擴散速度。其次,處理溫度范圍寬,一般可在 350 - 700℃之間進行,能滿足不同材料和性能要求。對于一些對變形要求嚴格的材料,可在較低溫度下進行離子氮化,有效控制變形量。再者,離子氮化能夠精確控制氮化層的厚度和組織形態。通過調節工藝參數,如電壓、電流、氣體流量和處理時間等,可以獲得從幾微米到幾百微米不等的氮化層厚度,并且可以根據需求形成不同的相結構,如化合物層和擴散層的比例可靈活調整。此外,離子氮化過程環保,能耗低,因為它在真空環境下進行,無需大量的化學試劑,且能量利用率高。汕頭離子氮化的操作方法