一文看懂工廠化循環水養殖系統設計原理!廢話少說,直接上干貨!一個擁有完善系統的工廠化漁場,你需要構建三個主要區域。分別水處理區、育/標苗區、養殖區,條件允許的情況下再增加一個實驗室和IT中心等配套設施。下面來詳細說說各區域的必要性和原理。水處理區“養魚先養水”,是業內共識。但是單獨建設水處理區的并不多,基本都是通過消毒、增氧等常規方式來預處理。這種方式對于傳統養殖,或低密度的工廠化,或換水式養殖是足夠了。養殖業與物流業結合,提高產品運輸效率。黑龍江微生物工廠化水產養殖基地
前期內部小試驗,效果十分明顯。不久后,這一模式將在嘉興市秀洲區的藍城漁業基地進行試點。袁利強認為,如果說產業鏈的“內外聯動”,讓企業找到了立根之本,“托管服務”的延伸,意義更在于聯農帶動,為外塘養殖戶增加效益,同時又降低了企業運營成本,可謂一舉兩得。按照傳統養殖模式,一年只能產一季魚,養殖戶一般在三四月投苗,等到十一月養成后賣魚。而現在,養殖戶3月份就能直接買大苗養在自家魚塘,7月長成賣出一批,此時再“補欄”一批大苗,到了11月又能賣,一塘由此產兩季,效益自然提升。云南循環水工廠化水產養殖流程養殖廢水處理技術的創新,為工廠化養殖提供了環保保障。
如今,在設備與技術的加持下,工廠化循環水系統優先能解決水產養殖中常見的“三大公害”:亞硝酸鹽、氨氮和pH值波動。氨氮通常來源于魚類不斷排出的糞便,飼料殘餌及淤泥等有機物,以游離氨或銨鹽形式存在于水中。由于氨不帶電荷,脂溶性高,易穿透細胞膜,導致魚體內的血液及組織液滲透性改變,破壞鰓黏膜,降低血紅蛋白的攜氧能力,引發內出血。當養殖水體內的氨氮含量持續12個小時在8mg以上時,會導致魚類死亡。此外,pH值過高或過低都會降低魚血的攜氧能力,攝食量低,消化率低,抑制生長。pH值過高表示養殖水體的堿性過高,說明水體內氨氮濃度過高;而pH值過低則說明池體酸性過高,會使池體內硫化氫濃度過大,造成毒性。
對于采用工廠化循環水養殖模式的漁場來說,光這些還不夠。打破“靠水吃水”,就要通過科技手段構建養殖品種所需要的水體環境,同時因為密度高,對水體要求便會更高。所以,水處理區是工廠化循環水養殖主要區域之一。水處理區通常又分為水處理區、儲水區、沉淀區。在工廠化循環水養殖系統中,水質和飼料的精確控制是確保魚類健康生長和產品質量的重要手段。通過自動化和智能化設備,養殖者可以實時監測和調整水質參數,如pH值、溶氧量和溫度,確保較佳的生長環境。同時,合理的飼料配方和投喂策略能夠優化魚類的營養吸收,促進健康生長。結果是,養殖的產品不僅在外觀上更加吸引人,而且在營養價值和口感上也有更好的表現,滿足了消費者對品質水產品的需求。工廠化養殖有助于提高水產品品質,滿足消費者對食品安全的需求。
在傳統養殖中,高密度養殖往往會導致水質惡化和魚類疾病頻發,而循環水系統通過先進的水質管理和自動化監控,能夠有效控制水質參數,如氧氣濃度、氨氮含量等,確保即使在高密度條件下,魚類也能健康生長。這種優勢使得循環水養殖成為應對土地資源限制和市場需求增長的重要策略。循環水養殖系統能夠通過精確控制環境條件,實現反季節生產和銷售。這意味著即使在自然環境不利的季節,養殖者也能提供高質量的水產品,滿足市場需求。這種靈活性使得生產者能夠在市場供需波動時迅速調整生產計劃,避免因市場飽和或缺貨而帶來的經濟損失。養殖技術研發與創新,是提高產業競爭力的關鍵。廣東高密度工廠化水產養殖魚池
工廠化養殖模式有助于提高漁業產業鏈的附加值。黑龍江微生物工廠化水產養殖基地
工廠化循環水養殖的發展階段,該模式在我國主要經歷了四個發展階段。頭一階段為探索起步階段(1970-1984),上海和北京開展了封閉式循環水養魚試驗,初步出現了我國工廠化循環水養殖的雛形。第二階段為引進試驗階段(1985-1998),深圳、寧波、營口引進德國、丹麥循環水養殖設備進行鰻魚養殖,帶動了我國蛋白質泡沫分離器、生物濾器、水質自動在線監測等水處理設備的自主研發。第三階段為消化吸收階段(1999-2006),該階段水處理設備的穩定性和可靠性得到進一步提升,初步構建了擁有自主知識產權的循環水養殖系統,逐步走向產業化、規模化的推廣應用。第四階段為集成整合階段(2007-至今),該階段集成構建了適合我國的養殖車間、水處理和養殖管理系統,逐步建立了多品種的循環水養殖模式。黑龍江微生物工廠化水產養殖基地