橋梁(尤其是鋼結構橋梁)防雷需兼顧結構安全與導電性能。主橋體采用多點接地,利用橋墩基礎鋼筋作為自然接地體,每 20 米設置一處引下線(Φ16 熱鍍鋅圓鋼),與橋面防撞護欄焊接連通(焊接點間距≤15 米)。斜拉索橋梁的鋼索需做絕緣處理(外包絕緣層),并在兩端設置放電間隙(距離≤5mm),避免雷電流直接流經鋼索。橋頭堡、監控設備房需設置單獨避雷針,保護范圍覆蓋設備區域,接地網與橋梁主體接地體間隔≥3 米,防止地電位反擊。照明系統燈具外殼、金屬橋架需與橋梁接地系統連接,電源線采用鎧裝電纜,進出橋梁處做等電位跨接。施工時需檢測橋梁鋼結構的導電連續性,焊接部位做防腐處理(環氧富鋅底漆 + 聚氨酯面漆),避免電化學腐蝕影響接地效果。接地網動態監測系統采樣率≥1次/分鐘。山東防雷器安裝工程防雷工程常見問題
浪涌保護器配置:IEC推薦多級SPD的能量配合計算(I級≥12.5kA8/20μs),國內規范按配電系統層級(電源三級、信號兩級)規定通流容量,兩者在SPD安裝位置和退耦要求上基本一致。檢測周期:IEC建議根據風險等級動態調整(1-5年),國內規范實行固定周期(一類每年一次),特殊行業(石化、)需縮短至半年。在“”工程中,常采用“國內標準為主、IEC標準補充”的雙合規設計,如海外數據中心接地系統同時滿足GB50174與ITU-TK.27標準。理解差異并靈活應用,是提升防雷工程國際化水平的關鍵。浙江防雷工程廠家防雷裝置維護周期≤3年(沿海地區≤2年)。
古建筑防雷保護與技術創新古建筑(如文物建筑、歷史遺跡)防雷需兼顧保護歷史風貌與有效防護,避免傳統防雷裝置對建筑美學的破壞。重要原則是“較小干預”,接閃器采用與建筑風格協調的隱形設計,如將避雷帶嵌入屋脊瓦壟、利用斗拱金屬構件作為接閃器,或在古樹頂端安裝仿生型避雷針(仿樹枝造型)。引下線優先利用建筑原有金屬構件(如鐵制寶頂、銅質屋脊),確需新增時采用與墻體顏色一致的絕緣導線,沿柱體隱蔽敷設。接地裝置避免大規模開挖,利用建筑基礎墊層內的鋼筋網作為自然接地體,不足時在周邊綠化帶埋設銅質接地模塊,表面恢復植被覆蓋。對于木質結構古建筑,需在梁柱節點處做絕緣隔離,防止引下線與木材直接接觸引發電化學腐蝕。
等電位連接是防止雷電反擊的重要措施,需將建筑物內金屬構件、電氣設備外殼、管道系統等與防雷接地系統做電氣連通。金屬門窗、幕墻龍骨等外露金屬部件,應通過 Φ12 圓鋼或 25×4mm 扁鋼與引下線焊接,焊接長度≥100mm。配電箱、控制柜等電氣設備外殼應設置專門用于接地端子,通過 4mm2 多股銅纜與就近等電位端子箱連接。燃氣管道、消防管道等金屬管線,在進出建筑物處需做跨接處理,跨接線采用 6mm2 銅纜,兩端用銅鼻子壓接并做防腐處理。等電位端子箱安裝高度為底邊距地 0.3 米,箱內端子排應標注清晰,連接導線應采用黃綠雙色接地專門用于線,線徑符合 GB 50169-2016《接地裝置施工及驗收規范》要求。降阻劑滲透型配方可降低土壤電阻率60%。
風力發電場的風機塔筒高度達數十米,易受直擊雷襲擊,葉片需內置接閃器,通過塔筒內部引下線與接地網連接。機艙內的控制系統和變流器對感應雷敏感,需采用雙層屏蔽電纜和高精度信號SPD。風電場接地網面積大,需采用網格狀布局和降阻措施,確保接地電阻穩定在設計值以內。充電樁作為新能源汽車的關鍵基礎設施,多位于露天停車場,電源線路和通信線路易遭受雷電波侵入。需在充電樁電源輸入端安裝交/直流浪涌保護器,通信接口(如CAN、以太網)設置信號SPD,同時充電樁外殼與接地系統可靠連接,形成等電位保護。新能源設備的高雷暴日運行環境,要求防雷裝置具備更高的可靠性和抗老化性能,需選用耐紫外線、耐高溫的新型材料,定期進行預防性維護,確保新能源系統在惡劣天氣下的安全運行。接地系統驗收需提供土壤電阻率分層檢測報告。吉林防雷產品安裝防雷工程標準
古建筑施工在木構件表面涂刷天然桐油,形成防護層的同時保留木材紋理。山東防雷器安裝工程防雷工程常見問題
醫療場所防雷與精密設備保護醫院、實驗室等醫療場所的MRI、CT等精密設備對雷電電磁脈沖極其敏感,其防雷工程需重點解決設備誤動作、數據丟失和漏電流危害問題。機房屏蔽采用“金屬網+導電涂料”復合工藝,墻面涂料含納米銀顆粒(導電率≥10^4S/m),門窗使用電磁屏蔽玻璃(屏蔽效能≥60dB)。配電系統采用“隔離變壓器+防雷插座+UPS冗余”三級防護,隔離變壓器初級與次級繞組間設置屏蔽層并接地,防雷插座內置過電壓、過電流雙保護模塊(響應時間<2ns)。信號線路方面,醫療設備的DICOM數據傳輸線需使用雙層屏蔽電纜,兩端安裝專門用于信號SPD(插入損耗<0.5dB),避免雷電干擾導致圖像失真或數據錯誤。山東防雷器安裝工程防雷工程常見問題