明青智能:用AI視覺解鎖工業新價值
在傳統質檢依賴人眼判斷的領域,細微缺陷常帶來高昂風險。
明青智能通過深度學習模型,將工人經驗轉化為可復用的AI能力,讓視覺檢測更穩定、更可持續。
它讓您看得更準:可以看到更加細微的缺陷,并大幅度降低漏檢率;
并讓您看得更快:檢測速度比人工實現了倍數提升,且支持200+攝像頭同時實時分析
我們專注于解決三個真實問題:
1.老師傅退休導致的經驗斷層
2.夜間/強光環境下的判斷波動
.突發缺陷類型的快速響應
“看見更多可能”不是空談——我們已幫助多家企業將AI視覺轉化為穩定決策能力。您的產線痛點,或許就是下一個可量化的改進案例。
我們為您提供可行性評估,您可以用3張現場照片開啟AI升級驗證。 明青ai視覺系統,高性價比之選。AI視覺監控與分析系統定制
明青AI視覺方案:幫助構建全流程主動式質量管控體系。
明青AI視覺方案通過實時監測與智能決策技術,助力企業實現質量管控從被動響應向主動預防的跨越,有效降低生產損耗與返工成本。
在生產環節,系統對工藝參數進行快速動態追蹤,通過工藝偏差預警模型,在缺陷發生前觸發干預機制,從而大幅度降低次品率,縮短停機處理時長。在質檢端,通過產品實時掃描與缺陷判定,在線攔截不良品,可以有效減少返工成本。針對設備健康管理,方案整合振動、溫度等多源數據,構建預測性維護模型,可以提前預警設備維護需求,從而降低了設備異常停機率;倉儲場景中,智能糾偏模塊可實時識別分揀路徑偏差,從而減少分揀錯誤率。
目前,明青方案已在諸多行業落地,助力企業構建覆蓋"預防-監測-糾偏"全鏈路的智能化質量防線。 手勢識別控制系統應用明青AI視覺系統,實時分析與反饋,賦能智能決策。
明青科技AI視覺計數方案,穩定與可靠之選。
在生豬屠宰加工環節,白條計數直接影響生產管理和成本核算。明青科技自主研發的AI視覺智能計數系統,通過持續迭代優化,在復雜生產場景中實現計數準確率持續穩定在99.99%以上,為行業提供了可靠的技術解決方案。系統采用深度神經網絡算法架構,結合動態環境優化模型,有效克服傳統視覺方案在霧氣、血漬、機械震動等干擾條件下的識別局限。通過大量樣本訓練形成的特征識別引擎,可準確區分粘連、遮擋等復雜狀態下的白條個體,實現99.99%以上的計數準確率。該方案支持定制化部署,兼容不同規模屠宰廠的產線配置。通過自動化計數替代人工核驗,屠宰企業可以減少質檢人員配置,節省人工成本,同時杜絕了人為誤差導致的損耗和結算爭議。
明青智能將持續深耕食品加工領域,以工業級AI視覺技術助力傳統產業智能化升級,用可靠的技術成果推動行業高質量發展。
明青智能端-邊-云架構:準確與能效的工程實踐
在智慧工廠、智慧交通等高實時性場景中,單一計算層難以兼顧識別精度與能耗效率。
明青智能采用端-邊-云分層決策架構,構建場景適配的計算鏈路:端側設備執行輕量化預處理(<50ms延時),邊緣節點完成80%高頻次檢測任務,云端集中處理長周期數據分析與模型迭代。
比如高速公路缺陷(拋灑物、裂縫等)檢測,因為巡檢車速度很快,且有些缺陷必須立刻上報,以盡可能避免交通事故的發生,就需要利用邊緣計算設備實時識別出比較大的坑槽、拋灑物等情況,但裂縫厚度、長度等測量,則放到云端系統計算,實現識別及時性和準確性、系統成本和效率的統一。
我們提供分層架構的靈活組合方案:在“端”級,提供AIlooker系列智能攝像頭完成各種識別任務,在“邊”級,提供自研的單體智能盒,同時支持多種邊緣硬件適配;在“云”端,提供云端識別平臺,實現大規模、復雜識別任務。 明青智能已在多個場景,采用該架構的實現好很好的識別效果,完整技術方案可聯系技術團隊獲取。 明青智能:用AI視覺解鎖工業新價值。
明青AI視覺:為企業裝上智能化的“眼睛”。
在工業生產與質量管控中,人工檢測效率低、標準不統一等問題長期存在。明青AI視覺解決方案通過智能化圖像分析技術,幫助企業實現準確、高效的自動化檢測,切實提升運營質量。
看得更快,成本更低:系統可7×24小時穩定運行,單臺設備檢測速度比人工快5-10倍,可以大幅減少重復性人力投入。
看得更準,質量更穩:劃痕、尺寸偏差、裝配錯漏等細微缺陷,識別準確率超99%,較人工目檢漏檢率大幅度降低,從而降低客戶投訴率下降,提升產品合格率提升。
靈活適配生產場景:無需改造現有產線,支持快速部署。已成功應用于電子、食品、汽車零部件等多個行業,幫助企業將質檢效率轉化為市場競爭優勢。
明青AI視覺不追求“高大上”的技術概念,只用實際效果助力企業降本、增效、提質 讓您的管理更智能,明青AI視覺的支持沒有死角。安全區域檢測系統軟件
行業Know-How融合,定制專屬AI視覺模型。AI視覺監控與分析系統定制
明青智能:讓AI真正理解您的行業
工業場景的細微差異決定了AI視覺的成敗。明青智能深入客戶生產現場,與現場工程師共同梳理人工作業邏輯、設備參數波動、材料特性等關鍵經驗,將其轉化為AI模型的訓練準則。
我們為某童鞋企業成品檢測系統時:會學習老師傅的經驗判斷標準,建立12類缺陷量化規則;結合產線規律優化圖像采集頻率;保留人工復檢通道,AI與經驗形成雙重校驗。
不同于通用方案,我們堅持:
模型訓練數據來自客戶現場;
參數調整參考生產節拍與行業經驗
交付成果包含可解釋的缺陷判定依據
目前我們已在制藥、汽配、智慧城市、化工等行業落地多個定制項目,幫助客戶快速完成AI與傳統流程的融合。
您的行業經驗,加上我們的技術能力——這才是工業AI落地的有效路徑 AI視覺監控與分析系統定制