多年來,Nanoscribe在微觀和納米領域一直非常出色,并且參與了很多3D打印的項目,包括等離子體技術、微光學等工業微加工相關項目。如今,Nanoscribe正在與美因茲大學和帕德博恩大學在內的其他行業帶領機構一起開發頻率和功率穩定的小型二極管激光器。該團隊的項目為期三年,名為Miliquant,由德國聯邦教育和研究部(簡稱BMBF)提供資助。他們的研發成果——3D打印光源組件,將用于量子技術創新,并可以應用在醫療診斷、自動駕駛和細胞紅外顯微鏡成像之中。研發團隊將開展多項實驗,開發工業傳感器和成像系統,這就需要復雜的研發工作,還需要開發可靠的組件,以及組裝和制造的新方法。無掩膜光刻機具有無掩模光刻技術的便利,很大程度提高了無掩膜影印和新產品研發的效率。天津雙光子無掩膜光刻激光直寫
QuantumXshape是Nanoscribe推出的全新高精度3D打印系統,用于快速原型制作和晶圓級批量生產,以充分挖掘3D微納加工在科研和工業生產領域的潛力。該系統是基于雙光子聚合技術(2PP)的專業激光直寫系統,可為亞微米精度的2.5D和3D物體的微納加工提供極高的設計自由度。QuantumXshape可實現在6英寸的晶圓片上進行高精度3D微納加工。這種效率的提升對于晶圓級批量生產尤其重要,這對于科研和工業生產領域應用有著重大意義。總而言之,該系統拓寬了3D微納加工在多個科研領域和工業行業應用的更多可能性(如生命科學、材料工程、微流體、微納光學、微機械和微電子機械系統(MEMS)等)。全新QuantumXshape作為Nanoscribe工業級無掩膜光刻系統QuantumX產品系列的第二臺設備,可實現在25cm2面積內打印任何結構,很大程度推動了生命科學,微流體,材料工程學中復雜應用的快速原型制作。QuantumXshape作為具備光敏樹脂自動分配功能的直立式打印系統,非常適合標準6英寸晶圓片工業批量加工制造。江蘇高精度無掩膜光刻三維光刻高精度無掩膜光刻寫,為您提供高效、精細的加工解決方案。
科學家們基于Nanoscribe的雙光子聚合技術(2PP),發明了GRIN光學微納制造工藝。這種新的制造技術實現了簡單一步操作即可同時控制幾何形狀和折射率來打印自由曲面光學元件。憑借這種全新的制造工藝,科學家們完成了令人印象深刻的展示制作,打印了世界上特別小的可聚焦可見光的龍勃透鏡(15μm直徑)。相似于人類眼睛晶狀體的梯度,這種球面晶狀體的折射率向中心逐漸增加,使其具有獨特的聚光特性。Nanoscribe的PhotonicProfessional打印系統可用于將不同折射率的龍勃透鏡和其他自由形狀的光學組件打印于微孔支架材料上(例如孔狀硅材及二氧化硅)。突出特點是不再像常規的雙光子聚合(2PP)那樣在基體表面進行直寫,而是在孔型支架內。通過調整直寫激光的曝光參數可以改變微孔支架內材料的聚合量,從而影響打印材料的有效折射率。采用全新SCRIBE技術(通過激光束曝光控制的亞表面折射率)可以在保證亞微米級別的空間分辨率同時,對折射率的調節范圍甚至超過0.3。
Nanoscribe的PhotonicProfessionalGT2使用雙光子聚合(2PP)來產生幾乎任何3D形狀:晶格、木堆型結構、自由設計的圖案、順滑的輪廓、銳利的邊緣、表面的和內置倒扣以及橋接結構。PhotonicProfessionalGT2結合了設計的靈活性和操控的簡潔性,以及比較廣的材料-基板選擇。因此,它是一個理想的科學儀器和工業快速成型設備,適用于多用戶共享平臺和研究實驗室。Nanoscribe的3D無掩模光刻機目前已經分布在30多個國家的前沿研究中,超過1,000個開創性科學研究項目是這項技術強大的設計和制造能力特別好的證明。Photonic Professional GT在微納米3D打印,以及無掩模光刻領域樹立了行業內新的標竿。
Nanoscribe公司的PhotonicProfessionalGT2系統把雙光子聚合技術融入強大了3D打印工作流程,實現了各種不同的打印方案。雙光子聚合技術用于3D微納結構的增材制造,可以通過激光直寫而避免使用昂貴的掩模版和復雜的光刻步驟來創建3D和2.5D微結構制作。PhotonicProfessionalGT2系統可以實現精度上限的3D打印,突破了微納米制造的限制。該打印系統的易用性和靈活性的特點配以比較廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。我們的3D微納加工技術可以滿足您對于制作亞微米分辨率和毫米級尺寸的復雜微機械元件的要求。3D設計的多功能性對于制作復雜且響應迅速的高精度微型機械,傳感器和執行器是至關重要的無掩膜光刻技術助力創新。河南微納米無掩膜光刻3D光刻
Nanoscribe 的Quantum X 無掩模光刻系統在多個領域運用較廣。天津雙光子無掩膜光刻激光直寫
Nanoscribe首屆線上用戶大會于九月順利召開,在微流控研究中,通常在針對微流控器件和芯片的快速成型制作中會結合不同制造方法。亞琛工業大學(RWTHUniversityofAachen)和不來梅大學(UniversityofBremen)的研究小組提出將三維結構的芯片結構打印到預制微納通道中。生命科學研究的驅動力是三維打印模擬人類細胞形狀和大小的支架,以推動細胞培養和組織工程學。丹麥技術大學(DTU)和德國于利希研究中心的研究團隊展示了他們的成就,并強調了光刻膠如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微納光學和光子學研究中,布魯塞爾自由大學的研究人員提出了用于光纖到光纖和光纖到芯片連接的錐形光纖和低損耗波導等解決方案。阿卜杜拉國王科技大學的研究團隊3D打印了一個超小型單纖光鑷,以實現集成微納光學系統。連接處理是光子集成研究的挑戰。正如明斯特大學(WWU)研究人員所示,Nanoscribe微納加工技術正在驅動研究用于集成納米多孔電路的混合接口方法。麻省理工學院(MIT)的科學家們正在使用Nanoscribe的2PP技術制造用于高密度集成光子學的光學自由形式耦合器。天津雙光子無掩膜光刻激光直寫