深度學習技術已經在滾動軸承故障監測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發, 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數, 在自適應提取不同域數據的公共特征表示同時, 提高正常狀態和早期故障狀態之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態的排列熵值構建報警閾值, 實現在線數據中異常序列的快速匹配, 同時提高在線檢測結果的可靠性. 在XJTU-SY數據集上的實驗結果表明, 與現有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數.通過在電機上安裝傳感器,實時采集電機的運行數據,如電流、電壓、轉速等,傳輸到監測系統進行分析和處理。嘉興NVH監測特點
傳統方法通常無法自適應提取特征, 同時需要一定離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統分析的故障診斷方法利用狀態空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發的狀態變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監測中的應用仍存在較大的提升空間.南京仿真監測控制策略電機監測廣泛應用于各個領域,如能源、交通運輸、家用電器等。
振動的監測是機械設備狀態監測與故障診斷的重要手段之一。通過對機械設備在運行過程中產生的振動信號進行測量、分析和處理,可以獲取設備的狀態信息,進而判斷設備的健康狀況,預測故障發展趨勢,及時發現并處理潛在問題。振動的監測方法通常可以分為定期點檢、隨機點檢和長期監測等幾種方式。定期點檢是按照預定的時間間隔對設備進行振動測量,適用于對設備狀態進行定期檢查和評估。隨機點檢則是在設備運行過程中,根據需要對設備進行振動測量,適用于對設備狀態進行實時跟蹤和監測。長期監測則是對設備進行連續不斷的振動監測,適用于對設備狀態進行長期跟蹤和分析。在振動監測中,常用的傳感器包括加速度計、速度計和位移計等。這些傳感器可以測量設備在不同方向上的振動信號,并將振動信號轉換為電信號進行傳輸和處理。通過對振動信號的分析,可以獲取設備的振動特征參數,如振動幅值、頻率、相位等,進而判斷設備的運行狀態和故障類型。總之,振動的監測是機械設備狀態監測與故障診斷的重要手段之一。通過對振動信號的測量、分析和處理,可以及時發現并處理潛在問題,提高設備的可靠性和生產效率。同時,振動監測技術還可以為設備的預測性維護和優化運行提供有力支持。
傳統維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發展到較為成熟的在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。以各類如電機、軸承等設備為例,目前已發展到較為成熟在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。不同類型的電機在結構和工作原理上可能有很大差異,監測系統需要根據具體電機的特性進行定制。
狀態監測就是給機器體檢,故障診斷就是給機器看病。醫生給病人看病,首先是進行體征檢查,例如先查體溫,再進行驗血、X光、心電圖、B超、甚至CT等各種理化檢驗,然后根據檢查結果和病史,利用醫生的知識及經驗,對病情做出診斷。對機器故障的診斷,類似于醫生看病,首先對機器的狀態進行監測,例如先看振動值,再進行頻譜、波形、軸心軌跡、趨勢、波德圖等各種檢測分析,然后結合設備的原理、結構、歷史狀況等,利用專業人員的知識及經驗,對故障進行綜合分析判斷。1滾動軸承故障振動的診斷方法異步電動機的常見故障主要可以分為定子故障、轉子故障及軸承故障。其中軸承故障占70%以上,如果我們有辦法對軸承情況能實時進行監測,那么異步電動機故障率會減低。滾動軸承狀態監測和故障診斷的方法有多種,例如振動分析法、油液分析法(磁性法、鐵譜法、光譜法)、聲發射分析法、光纖診斷法等。各種方法都有自己的特點,其中振動分析法以其實用和相對簡單方便。滾動軸承不同于其它機械零件,其振動信號的頻率范圍很寬,信噪比很低,信號傳遞路途上的衰減量大,因此,提取它的振動特征信息必須采用一些特殊的檢測技術和處理方法。盈蓓德開發的系統可以從振動信號等監測數據中可以提取時頻特征、小波特征、包絡譜特征等早期故障特征。常州產品質量監測技術
通過監測數控機場刀具的振動頻率和振幅,可以評估切削過程中的穩定性和刀具的健康狀態。嘉興NVH監測特點
電力系統中發電機單機容量越大型發電機在電力生產中處于主力位置,同時大型發電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前和今后很長一段時間內的缺電、用電緊張的狀況而言,發電機的年運行小時數目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監測與診斷,做到早期預警以防止事故的發生或擴大具有重要的現實意義。通常對發電機的“監測”與“診斷”在內容上并無明確的劃分界限,可以說監測的數據和結果即為診斷的依據。監測利用各種傳感器在電機運行時對電機的狀態提取相關數據。故障診斷使用計算機及其相應智能軟件,根據傳感器提供的信息,對故障進行分類定位,確定故障嚴重程度并提出處理意見。因此狀態監測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態監測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理的安排檢修工作,實現所謂“預知”維修。這樣既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發揮設備的作用。嘉興NVH監測特點