未來,綠氫有望成為主力氫源,而電解水制氫則是綠氫的主要制取手段。電解水制氫賽道從政策、需求、供給端等角度定性定量看,發展要素是初步具備的。但2024H1電解槽中標約523MW,以示范項目+堿性槽為主,較2023A的597MW,并未增長,甚至小幅下降。盡管市場發展不及預期,但卡點明確。進一步分析,現階段,安全的風光耦合、綠氫消納能力的不足,是制氫端招標節奏放慢的兩大重要原因。行業需要時間,順應趨勢,尤其對于投資機構,橫向關注堿性槽、PEM槽與AEM槽的商業化進展,縱向留意相應零部件迭代的投資機會,以緩解當前市場痛點,推動電解水制氫賽道的真實繁榮。PEM水電解技術被譽為制氫領域極具發展前景的水電解制氫技術之一。烏蘭察布電解水制氫設備公司
電解水的工藝流程包括水的凈化、電解槽的設計、電流密度的控制、氣體的分離和純化等過程。具體流程如下:1.水的凈化:在電解水之前,需要對水進行凈化處理,去除其中的雜質和離子,以保證電解效率和氫氣的純度。2.電解槽的設計:電解槽的設計需要考慮到電解效率、能耗、耐腐蝕性能等因素,一般采用的是具有高效電解效果和良好耐腐蝕性能的材料。3.電流密度的控制:電流密度是影響電解效率和氫氣純度的重要因素,一般采用的是0.1~0.5 A/cm2的電流密度。4.氣體的分離和純化:在電解水過程中,氫氣和氧氣會同時產生,需要通過分離和純化的方法將氫氣和氧氣分開,并去除其中的雜質和水分,以得到純凈的氫氣。山東電解水制氫設備水電解制氫被認為是未來制氫的發展方向,特別是利用可再生能源電解水制氫。
AEM電解池是組成AEM電解系統的基本單位,多個AEM電解池一起組成了AEM電解模塊。大量的AEM電解模塊和多個輔助系統一起構成了AEM電解水系統。AEM電解模塊與PEM電解槽結構類似,其輔助系統包括氧氣處理和干燥系統、水箱、水處理凈化系統和交流直流轉換器等設備。陰離子交換膜AEM電解池的關鍵組成部分為陰離子交換膜組,由有機陽離子聚合物骨架和共價附著在骨架上的陽離子組成。陰極材料、陽極材料和陰離子交換膜是AEM電解池的,直接影響著AEM電解池的工作效率和設備壽命。
電解水的設備主要包括電解槽、電源和電極等組成。其中,電解槽是將水分解成氫氣和氧氣的主要裝置,一般采用的是聚合物電解槽或金屬電解槽。聚合物電解槽具有體積小、重量輕、耐腐蝕、絕緣性能好等優點,但是其耐高溫、高壓、高電流密度等方面的性能較差;金屬電解槽則具有耐高溫、高壓、高電流密度等優點,但是其重量較大、成本較高、耐腐蝕性能較差。因此,在實際應用中需要根據具體情況選擇合適的電解槽。電源是電解水過程中不可或缺的組成部分,它提供給電解槽所需的電能。在電源的選擇上,一般使用的是直流電源,因為電解水需要的是直流電能,而交流電源會導致電解槽中的電極發生電化學反應,從而影響電解效果。電極是電解水過程中起到催化作用的重要組成部分,它可以促進水分子的電解反應,從而提高電解速度和效率。電極的材料一般采用的是鉑、鈀、銥、銠等貴金屬或其合金,因為這些材料具有較好的電化學催化性能。PEM電解槽無需嚴格控制膜兩側壓力,具有快速啟動停止和快速功率調節響應的優勢。
灰氫是指通過化石燃料(如煤炭、石油、天然氣等)燃燒或重整制取的氫氣。在生產過程中,會釋放大量的二氧化碳,因此被稱為“灰氫”。這種制氫方式成本較低,但對環境影響較大,是目前全球主要的氫氣生產方式。藍氫是在灰氫的基礎上,應用碳捕集與封存技術(CCUS),將生產過程中產生的二氧化碳捕獲并封存,從而減少碳排放。雖然藍氫的碳排放強度相對較低,但由于需要額外的碳捕集和封存技術,其生產成本較高。綠氫目前沒有統一定義,國內俗稱的綠氫就是可再生氫,即通過使用可再生能源(例如太陽能、風能、核能等非化石能源)制造的氫氣?,F階段電解水是主要的將這些外部能源吸收并生產出氫氣的方式,力爭實現零碳排放。國內大多數工業級可再生能源電解水制氫應用項目仍然以堿性水電解為主。安陽專業電解水制氫設備價格
PEM電解水制氫技術具有電流密度大、氫氣純度高、響應速度快等優點,PEM電解水制氫技術工作效率更高。烏蘭察布電解水制氫設備公司
主流電解水制氫技術堿性電解水制氫:技術成熟,已商業化,但存在電流密度低、氣體交叉混合等問題。通過采用微間隙或零間隙結構可提升效率,未來應開發低成本非貴金屬催化劑。質子交換膜電解水制氫:具有高電流密度、高氣體純度等優點,但成本高、材料腐蝕問題突出。研究聚焦于開發非貴金屬催化劑,降低成本并提高材料耐腐蝕性。陰離子交換膜電解水制氫:成本效益高,但處于起步階段,膜材料性能和設備應用有待探索。未來需優化非貴金屬催化劑,開發新型納米結構材料。固體氧化物電解水制氫:高溫下效率高,但穩定性和耐久性不足。研究重點是開發新型材料和催化劑,解決高溫下的穩定性問題。烏蘭察布電解水制氫設備公司