無機粘結劑如硅酸鈉(水玻璃),具有環保、成本低等優點,其粘結的砂型透氣性相對較好,因為水玻璃在固化過程中形成的凝膠結構不會完全堵塞砂粒間的孔隙,為氣體排出保留了通道。然而,水玻璃粘結劑的粘結強度相對較低,難以滿足一些對強度要求較高的鑄件生產需求。為了平衡透氣性...
通過對 3D 砂型打印與傳統砂型鑄造在技術原理、復雜結構成型能力、生產周期、成本效益、精度與質量以及環保等多個方面的深入對比分析,可以清晰地看出 3D 砂型打印技術相較于傳統砂型鑄造具有諸多優勢。在復雜結構成型方面,它突破了傳統工藝的限制,為產品設計創新提供了...
3D 砂型打印技術在復雜結構成型方面展現出了無可比擬的優勢。通過數字化建模和逐層打印的方式,3D 砂型打印機能夠輕松地將設計圖紙中的復雜結構轉化為實際的砂型。對于航空發動機葉片內部的冷卻通道,3D 砂型打印可以一次性精確地打印出完整的結構,無需進行型芯的組合和...
除了尺寸精度外,鑄件的內部質量同樣至關重要。傳統砂型鑄造在砂型緊實過程中,難以保證型砂在復雜型腔中均勻分布,容易出現局部疏松、夾砂等缺陷。而且,在金屬液澆注過程中,由于充型不均勻、凝固順序不合理等原因,容易產生縮孔、縮松、氣孔等內部缺陷,這些缺陷會嚴重影響鑄件...
對于無機粘結劑,如硅酸鈉,通常采用吹二氧化碳(CO?)硬化或有機酯硬化等方式。吹 CO?硬化速度快,但硬化過程中容易出現表面硬化而內部未完全硬化的現象,影響砂型整體強度,且可能導致砂型表面結構致密,透氣性降低。有機酯硬化則相對緩慢,能夠使粘結劑在砂型內部更均勻...
傳統砂型鑄造在砂型緊實過程中,難以確保型砂在復雜型腔中均勻分布,容易造成砂型局部強度不足或疏松,從而在澆注過程中引發砂眼、氣孔、縮孔等缺陷,影響鑄件的質量和性能。而且,一旦模具制作完成,若要對鑄件設計進行修改,往往需要重新制作模具,這進一步延長了產品開發周期,...
有機粘結劑在 3D 砂型打印領域應用,其種類繁多,常見的有樹脂類、酚醛類、呋喃類粘結劑等。以樹脂類粘結劑為例,它具有良好的粘結性能,能夠在砂粒之間形成較強的粘結力,從而賦予砂型較高的強度。環氧樹脂粘結劑在與固化劑發生交聯反應后,會形成三維網狀結構,將砂粒牢固地...
打印噴頭的類型、孔徑大小以及噴射壓力等參數,與粘結劑的性質密切相關。不同類型的粘結劑具有不同的粘度和流動性,需要與之相匹配的噴頭參數才能實現均勻、精確的噴射。對于粘度較高的粘結劑,需要較大的噴射壓力和合適的噴頭孔徑,以確保粘結劑能夠順利噴出并均勻分布在砂床上。...
砂粒的粒度、形狀、表面粗糙度等特性,會影響粘結劑與砂粒之間的粘結效果。一般來說,細粒度的砂粒比表面積較大,需要更多的粘結劑才能實現良好的粘結;而粗粒度的砂粒則相對需要較少的粘結劑。同時,砂粒的形狀和表面粗糙度也會影響粘結劑的滲透和附著。表面粗糙、形狀不規則的砂...
粘結劑的固化過程對砂型的透氣性和強度有著重要影響,選擇合適的固化工藝能夠有效平衡二者的關系。對于有機粘結劑,常用的固化方式有熱固化和化學固化。熱固化是通過升高溫度使粘結劑快速固化,這種方式能夠在短時間內形成較高的強度,但高溫可能導致粘結劑過度收縮,堵塞砂粒間的...
尺寸精度是衡量鑄件質量的重要指標之一。在傳統砂型鑄造中,由于模具制造誤差、砂型緊實度不均勻、分型面配合不良以及金屬液澆注過程中的收縮變形等多種因素的影響,鑄件的尺寸精度往往難以保證。對于一些對尺寸精度要求較高的零部件,如航空航天領域的發動機部件、汽車制造中的精...
在傳統砂型鑄造過程中,制作模具是極為關鍵且耗時費力的環節。對于簡單形狀的鑄件,模具制作相對容易;但當鑄件形狀復雜,尤其是具有內部空腔、異形曲面、薄壁結構或精細細節時,模具制造的難度呈幾何倍數增長。例如,對于帶有復雜內部冷卻通道的航空發動機葉片,傳統方法需要通過...
有機粘結劑在 3D 砂型打印領域應用,其種類繁多,常見的有樹脂類、酚醛類、呋喃類粘結劑等。以樹脂類粘結劑為例,它具有良好的粘結性能,能夠在砂粒之間形成較強的粘結力,從而賦予砂型較高的強度。環氧樹脂粘結劑在與固化劑發生交聯反應后,會形成三維網狀結構,將砂粒牢固地...
3D 打印砂型技術則打破了這一技術壁壘。通過計算機輔助設計(CAD)軟件構建渦輪葉片的三維數字模型后,3D 砂型打印機能夠依據模型信息,以逐層打印的方式,將粘結劑精確地噴射到砂床上,直接成型出帶有復雜冷卻通道的砂型。打印過程中,無需考慮模具的限制,能夠輕松實現...
除了加強筋,還可以在砂型內部設計支撐結構。對于具有復雜內部結構或懸空結構的砂型,支撐結構能夠在打印過程中為這些部位提供臨時支撐,保證打印的順利進行,同時在澆注過程中也能增強砂型的整體強度。在設計支撐結構時,要考慮其對透氣性的影響,盡量采用鏤空、網格狀的支撐結構...
傳統砂型鑄造工藝在模具制造、砂型烘干、金屬熔煉和澆注等環節都需要消耗大量的能源,同時會產生大量的廢氣、廢渣和粉塵等污染物,對環境造成嚴重的污染。例如,在金屬熔煉過程中,需要使用大量的煤炭、天然氣等化石能源,燃燒過程中會排放出二氧化碳、二氧化硫、氮氧化物等有害氣...
發動機缸體作為汽車發動機的關鍵部件,其結構同樣十分復雜,內部包含多個相互連通的氣缸、冷卻水套、潤滑油道等結構。傳統鑄造工藝制造發動機缸體砂型時,通常需要將多個砂芯進行組裝,這不僅增加了砂型制造的難度和成本,而且容易出現砂芯錯位、縫隙等問題,影響缸體的尺寸精度和...
在當今競爭激烈的市場環境下,產品的上市速度成為企業贏得競爭的關鍵因素之一。傳統砂型鑄造工藝由于涉及多個復雜的工序,生產周期較長。從初的模具設計到模具制作,再到砂型制造、澆注、清理和后處理等環節,每個步驟都需要耗費大量的時間。尤其是對于小批量、定制化產品的生產,...
無機粘結劑以水玻璃、磷酸鹽等為,與有機粘結劑相比,具有環保、成本低等優勢。水玻璃是一種常見的無機粘結劑,它在砂型打印中通過與硬化劑反應,使砂粒之間形成粘結。水玻璃粘結劑的粘結強度相對較低,但通過合理的配方設計和工藝控制,可以滿足一些對強度要求不太高的鑄件生產需...
發動機缸體作為汽車發動機的關鍵部件,其結構同樣十分復雜,內部包含多個相互連通的氣缸、冷卻水套、潤滑油道等結構。傳統鑄造工藝制造發動機缸體砂型時,通常需要將多個砂芯進行組裝,這不僅增加了砂型制造的難度和成本,而且容易出現砂芯錯位、縫隙等問題,影響缸體的尺寸精度和...
粘結劑的用量也至關重要。增加粘結劑用量通常會提高砂型強度,因為更多的粘結劑能夠形成更多、更牢固的粘結橋。但過量的粘結劑會填充砂粒之間的孔隙,嚴重降低透氣性。因此,需要通過實驗和生產實踐,確定不同鑄件、不同砂粒條件下粘結劑的比較好用量,在保證砂型強度滿足生產要求...
尺寸精度是衡量鑄件質量的重要指標之一。在傳統砂型鑄造中,由于模具制造誤差、砂型緊實度不均勻、分型面配合不良以及金屬液澆注過程中的收縮變形等多種因素的影響,鑄件的尺寸精度往往難以保證。對于一些對尺寸精度要求較高的零部件,如航空航天領域的發動機部件、汽車制造中的精...
3D 砂型打印技術采用數字化控制和高精度的噴頭或材料施加裝置,能夠精確地控制砂型每一層的厚度和形狀,從而實現極高的尺寸精度。一般來說,3D 砂型打印的砂型尺寸精度可以達到 ±0.3mm - ±0.5mm,甚至更高,能夠滿足大多數產品對尺寸精度的嚴格要求。以某航...
傳統砂型鑄造工藝在模具制造、砂型烘干、金屬熔煉和澆注等環節都需要消耗大量的能源,同時會產生大量的廢氣、廢渣和粉塵等污染物,對環境造成嚴重的污染。例如,在金屬熔煉過程中,需要使用大量的煤炭、天然氣等化石能源,燃燒過程中會排放出二氧化碳、二氧化硫、氮氧化物等有害氣...
3D 砂型打印技術采用數字化控制和高精度的噴頭或材料施加裝置,能夠精確地控制砂型每一層的厚度和形狀,從而實現極高的尺寸精度。一般來說,3D 砂型打印的砂型尺寸精度可以達到 ±0.3mm - ±0.5mm,甚至更高,能夠滿足大多數產品對尺寸精度的嚴格要求。以某航...
傳統砂型鑄造在型砂造型過程中,由于需要制作模具和進行砂型修整,往往會造成大量型砂的浪費。據統計,傳統鑄造工藝的材料利用率通常在 50% - 70% 之間。而 3D 砂型打印采用按需打印的方式,根據砂型的三維模型精確控制材料的使用,未被粘結的砂料可以回收再利用,...
在現代制造業蓬勃發展的浪潮中,鑄造工藝作為金屬成型的重要手段,始終占據著關鍵地位。傳統砂型鑄造歷經數百年的發展與完善,在工業生產中曾長期扮演著主導角色,為各行業提供了大量的鑄件產品。然而,隨著科技的飛速進步以及市場對產品多樣化、高性能需求的不斷攀升,傳統砂型鑄...
對于無機粘結劑,如硅酸鈉,通常采用吹二氧化碳(CO?)硬化或有機酯硬化等方式。吹 CO?硬化速度快,但硬化過程中容易出現表面硬化而內部未完全硬化的現象,影響砂型整體強度,且可能導致砂型表面結構致密,透氣性降低。有機酯硬化則相對緩慢,能夠使粘結劑在砂型內部更均勻...
當粘結劑的粘結強度過高時,雖然砂型的強度得到了保障,但也可能帶來一些問題。過高的粘結強度會使砂型在脫模過程中變得困難,容易造成砂型的損壞。同時,過高的粘結強度還可能導致砂型的透氣性降低,在金屬液澆注過程中,型腔內的氣體無法及時排出,從而在鑄件內部形成氣孔、氣縮...
過薄的打印層會增加打印時間和成本,并且在粘結劑用量相同的情況下,由于每層砂粒之間的粘結面積相對較小,可能導致砂型強度降低。相反,較厚的打印層可以縮短打印時間,提高生產效率,同時在一定程度上增加砂粒之間的粘結面積,有利于提度,但過厚的打印層會使砂型結構變得粗糙,...