(盤管和冰球集裝箱式的蓄冰罐和一定尺寸要求的蓄冰盤管以及有多少盤管和冰球才能相應地蓄多少冷量的致命問題)冰漿蓄冰罐設置靈活、蓄冷增容性好。冰漿蓄冷的蓄冰罐只是一個存水的容器,長寬高尺寸可以分散靈活設置;冰漿制取裝置不受時間限制,簡單地增大蓄冰罐體積,就利用周六日雙休日夜間 16 小時低谷電,在下一周的周一到周三實現全蓄冷以獲得更多的運行效益。而冰球和盤管則必須增加2倍的冰球和盤管裝置,價格昂貴,不劃算。(盤管和冰球蓄冷量與盤管和冰球的材料成本的一對一的正比關系)。冰漿系統與太陽能光伏耦合,實現可再生能源驅動的低碳供冷。中山氣體射流冰漿蓄冷原理
綜合起來冰漿蓄冷技術克服了盤管和冰球蓄冷技術中固有的幾個難題,歸結如下:(盤管和冰球制冰工況只有空調工況制冷的 0.65,衰減很大且在制冰過程中,隨著冰層的加厚,制冷效率越來越低,當制冰結束時制冷量只有額定制冰工況的一半)冰漿制冰效率高 20%以上紊流狀態的液液交換創造了很好的傳熱條件,這是盤管和冰球無法相比的;-3°℃的蒸發器出水溫度保證了制冷效率比盤管和冰球的-6℃高 10%以上;水的結冰不像盤管和冰球附著在管壁上,保證了蓄冰 8 小時過程中穩定的制冷效率。惠州丁烷冰漿蓄冷技術冰漿系統參與電力需求響應,通過調整蓄冷量獲取額外收益。
過冷法,過冷法冰漿發生系統。在過冷換熱器中,水被過冷到-2℃,當其離開過冷器時,大約2.5%的過冷水變成冰晶,其余大部分仍是液相,產生的冰晶落入蓄冷槽,在蓄冷槽內由于冰、水的密度差,冰晶聚集在蓄冷槽的上部,而水儲存在蓄冷槽的下部,其水溫仍保持約0℃。夜間低谷時,蓄冷系統產生冰晶,使蓄冷槽內的冰晶濃度達到20%-30%;白天高峰時,蓄冷底部的冷水被送到空調末端換熱器中向房間供冷。動態冰漿由于具有蓄冷密度大、流動性和傳熱性能好等優點,現已被用于蓄冷空調系統中用于用電負荷的“移峰填谷”,還有用于工業處理過程和食品工程領域中。隨著對動態冰漿技術的深入研究,其設備成本將降低、運行效率將提高,潛在的應用領域將進一步擴大,動態冰漿是一種非常實用的新技術。
蓄冷儲能的優勢,從電池儲能的角度來說,電力使用方便,儲電調峰的好處顯而易見。但從效率角度來看,對于空調機組來說,蓄冷儲能的優勢更加明顯,因為蓄冷的熱效率高于儲電,而熱效率決定了中央空調的運行成本。因此,蓄冷是較高效的中央空調儲能調峰技術。從成本來看,按目前儲電綜合成本約3000元/kWh,移峰1kWh的電力負荷,蓄冷的成本只為350-500元/kWh(LiB儲能技術的10~20%)。此外,蓄冷的上下游產業配套比較成熟,規模化應用后的成本下降空間大。冰漿蓄冷系統通過制冷機夜間制冰,日間融冰釋冷,明顯減少白天用電負荷。
部分典型工程案例,從技術升級方向來看,下一代冰漿蓄冷技術升級將堅持能效提升和裝備提升兩個思路,一是簡化系統,減少載冷劑循環,可節省約20%泵功;減少換熱損失,可提高約6%的效率;二是提高制冰設備的集成度,減小占地面積;研發大容量制冰機組,實現電-冷轉換(制冰)裝備的集成化、模塊化、大型化,降低蓄冷系統成本,提高場景適應性。冰漿技術在供熱及其他領域的應用,宋文吉指出,冰漿技術也可在供熱領域實現應用。利用可控相變技術,可以進一步提取由水到冰的相變潛熱,這個熱可以作為熱泵供熱的熱源,冰源熱泵可為跨季節儲冷提供無償的冰。冰漿由細小冰晶與載冷劑混合而成,流動性好且換熱效率高,適合管道輸送。中山氣體射流冰漿蓄冷原理
動態制冰技術可快速生成高含冰率冰漿(20%-40%),提升蓄冷密度。中山氣體射流冰漿蓄冷原理
冰漿蓄冷儲能技術是一種高效、環保的能量儲存和利用技術。它在建筑空調系統、工業制冷和醫療設備等領域具有普遍的應用。盡管面臨設備成本較高、空間需求大和維護難度等挑戰,但冰漿蓄冷儲能技術的優勢使得它成為可持續發展的關鍵技術之一。我們有理由相信,隨著技術的進一步發展和成熟,冰漿蓄冷儲能技術將會在未來得到更普遍的應用。動態冰漿蓄冷技術發展較晚,國內較近幾年才開始對其進行研發和建設可提供參考的工程案例比較少。中山氣體射流冰漿蓄冷原理