防雷竣工檢測需與建筑電氣、消防、智能化等系統協同驗收,確保各系統安全兼容。與電氣系統配合時,檢查配電箱 PE 線與防雷接地干線的連接,確認 TN-S 系統中 N 線與 PE 線在進線端嚴格分開,避免零線電流導入防雷接地體。消防系統檢測中,查看消防控制室接地是否與防雷接地共用,共用時需設置等電位連接帶,防止雷電干擾消防信號。智能化系統驗收時,檢測監控攝像頭、門禁系統的信號線路屏蔽接地,確認其 SPD 接地端與防雷接地干線的連接長度<0.5m,避免長引線導致保護失效。對于綜合布線系統,檢查金屬橋架是否與樓層等電位端子板連接,橋架連接處的跨接導體是否符合截面要求(銅質≥6mm2)。協同驗收中發現的矛...
易燃易爆場所如油庫、氣站、化工廠等,由于存在可燃氣體、蒸汽或粉塵,雷擊引發的火花極易導致baozha 燃燒事故,因此這類場所的防雷檢測具有更高的安全標準和特殊要求。檢測內容除常規項目外,重點關注防靜電接地、防爆電氣設備的防雷措施和場所內的電磁環境安全。防靜電接地檢測要求接地電阻不大于 10Ω,且所有金屬管道、儲罐、設備均需進行等電位連接,消除靜電積聚風險。防爆電氣設備需檢查其防雷隔離裝置和浪涌保護措施是否符合 GB 3836 系列標準,確保在雷擊過電壓下不產生電火花。場所內的電磁環境檢測通過測量空間電磁場強度,評估雷擊電磁脈沖對可燃氣體濃度監測設備、控制系統的干擾影響,必要時采取電磁屏蔽、線路...
浪涌保護器是防護感應雷和操作過電壓的關鍵設備,其檢測內容包括外觀檢查、參數測試和安裝規范性檢查。外觀檢查需確認 SPD 的型號規格與設計圖紙一致,外殼有無破損、接線端子有無燒蝕痕跡。參數測試包括額定電壓、極大持續運行電壓、標稱放電電流、保護水平等,使用專門用于測試儀測量 SPD 的壓敏電阻老化程度和漏電流值,當漏電流超過閾值或壓敏電壓下降 10% 時,表明 SPD 性能失效需立即更換。安裝規范性檢查重點關注 SPD 的接線長度是否超過 0.5 米、接地引線是否短直、多級 SPD 之間的能量配合是否合理,不符合要求的安裝方式會影響 SPD 的保護效果,甚至導致自身損壞。SPD 的常見失效模式包括...
隨著材料科學與信息技術發展,新型防雷技術對檢測提出新要求。金屬氧化物避雷器(MOA)的檢測除傳統直流參考電壓測試外,需采用在線監測儀測量持續運行電流,評估其老化程度。石墨烯導電涂料作為新型接閃材料,檢測需關注涂層厚度(≥0.3mm)及導電率(≥10^4 S/m),采用四探針法測量表面電阻率。分布式光纖測溫技術用于接地體腐蝕監測,檢測時需驗證測溫信號與接地電阻變化的關聯性,設定腐蝕預警閾值。無人機搭載紅外熱成像儀檢測接閃器溫升異常,可快速定位接觸不良或銹蝕節點,提升高空檢測效率。在數據管理方面,基于 BIM 技術的防雷裝置三維建模,需檢測虛擬模型與實體裝置的參數一致性,實現檢測數據的可視化管理。...
邊緣計算技術賦予檢測設備本地化數據處理能力,提升現場決策效率。新型接地電阻測試儀集成邊緣計算模塊,可實時分析土壤濕度、溫度數據,自動修正測量結果(如濕度每增加 10%,接地電阻理論值下降 5%-8%),避免人工查表修正的誤差(傳統方法誤差可達 ±15%)。SPD 檢測儀通過邊緣計算識別老化特征,當漏電流曲線出現異常波動(如 30 分鐘內變化率>20%),自動判定模塊失效并生成更換建議,某金融數據中心應用后,SPD 更換準確率從 70% 提升至 95%,減少了誤換和漏換現象。邊緣計算還支持設備狀態自診斷,如檢測無人機電池續航不足時(剩余電量<20%),自動規劃返航路線并標記未檢測區域,提升高空檢...
隨著光伏建筑一體化普及,檢測需針對光伏組件、支架及逆變器等開展專項檢查。首先確認光伏陣列是否處于接閃器保護范圍內,采用滾球法計算保護范圍,若超出需在陣列周邊增設避雷針或避雷帶。光伏組件邊框接地檢測,要求每個組件通過 4mm2 以上銅導線與支架連接,支架每隔 15-20m 與建筑防雷引下線可靠焊接,焊接點做防腐處理。檢測逆變器輸入端和輸出端的 SPD 安裝情況,直流側 SPD 需具備反極性保護功能,標稱放電電流不小于 10kA(8/20μs),交流側 SPD 參數與電網系統匹配。光伏支架接地電阻測量需區分單獨接地與共用接地,共用時需確認與建筑接地體的連接點不少于兩處,接地電阻值不大于 4Ω。檢查...
電子信息系統機房作為敏感設備集中區域,防雷檢測需兼顧電源系統、信號系統及屏蔽接地。首先檢測機房所在建筑物的直擊雷防護,確認接閃器保護范圍是否覆蓋機房區域,屋頂金屬構件(如通風管道、廣告牌)是否與防雷裝置可靠連接。電源系統檢測包括各級電涌保護器(SPD)的安裝位置與參數匹配,重點檢查精密設備前端的第三級 SPD,其響應時間應小于 1ns,電壓保護水平需低于設備耐受閾值。信號線路檢測需確認視頻線、網線、光纖等是否采用屏蔽電纜,屏蔽層是否在兩端做等電位連接,非屏蔽線路是否穿金屬管敷設并接地。機房接地系統需區分工作接地、保護接地與防雷接地,當采用共用接地體時,接地電阻應不大于 1Ω,檢測機房地板下網格...
老舊小區和城中村普遍存在防雷設施缺失、私拉亂接嚴重、接地系統老化等問題,檢測需與民生改造結合,實現 “隱患排查 - 基礎補建 - 長效管理” 三步走。檢測重點:①建筑頂部隱患,排查居民自建的太陽能熱水器、鐵皮屋頂是否成為引雷點(常見問題:未接地或使用鐵絲簡易接地);②配電系統改造,檢測樓道配電箱的 SPD 安裝率(現狀不足 30%),并核查零線與地線是否混接(易引發感應雷觸電);③公共區域防護,檢查路燈、健身器材的金屬部件接地(接地電阻普遍>20Ω),防止雷擊時形成接觸電勢差。改造方案:①推廣 “國企補貼 + 居民自籌” 模式,為每戶加裝單相電源 SPD(補貼后成本約 50 元),并規范熱水器...
質量控制是確保檢測結果準確可靠的主要環節,需建立 "人、機、料、法、環" 全方面管控機制。人員方面,檢測機構需取得 CMA 認證,檢測人員須通過省級氣象主管部門考核,每 2 年進行一次繼續教育,重點掌握極新標準(如 GB 50057-2022 修訂的雷電防護分區規則)。設備管理實行 "一機一檔案",除年度校準外,每次檢測前需進行功能性驗證(如浪涌保護器測試儀的階躍電壓輸出誤差應≤±1%)。檢測方法嚴格遵循標準規程,例如使用三極法測量接地電阻時,電流極與被測接地體距離應為 40m(當接地體極大幾何尺寸 D≤20m 時),避免因布極距離不足導致測量誤差超過 15%。環境控制要求檢測時土壤含水率不低...
無損檢測技術(NDT)通過非破壞性手段評估防雷設施狀態,顯赫提升檢測效率與精度。超聲波測厚儀用于檢測接地體腐蝕,可在不開挖情況下測量扁鋼剩余厚度(精度 ±0.1mm),當腐蝕量超過公稱厚度的 20% 時觸發預警(如某化工廠接地扁鋼從 4mm 減薄至 3.2mm,及時更換避免接地失效)。磁粉探傷檢測引下線焊接缺陷,能發現≤0.1mm 的表面裂紋,配合滲透探傷可檢測近表面缺陷,解決傳統目視檢查漏判問題。紅外熱成像儀檢測 SPD 溫升,當模塊溫度較環境溫度高出 15℃時,判定為內部劣化(某數據中心通過紅外巡檢發現 3 個失效 SPD,避免了設備過電壓損壞)。微波雷達檢測接閃器保護范圍,通過模擬雷擊放...
在巖石山區、沙漠地帶等高土壤電阻率地區,接地系統的有效性面臨嚴峻挑戰,檢測時需關注接地電阻的實際測量值與季節系數的修正。常規四極法測量需將電流極和電壓極延伸至 二十 D(D 為接地網對角線長度)以外,避免地網屏蔽效應影響數據準確性。當實測接地電阻超過設計值時,需分析是否因接地體敷設深度不足(小于 0.8 米)、降阻材料失效(如長效降阻劑流失)或接地體間距過密(小于 3 米)導致。優化策略包括:①采用深井接地技術,在地下 5-10 米處敷設垂直接地體,利用深層低電阻率土壤降低接地電阻;②使用銅包鋼接地體并外覆導電防腐涂料,延長接地體壽命;③在接地體周圍敷設石墨烯基柔性降阻帶,通過改善周邊土壤導電...
防雷工程檢測是技術性與風險性并存的工作,檢測人員需具備扎實的專業知識和嚴謹的職業素養。資質認證方面,國家實行檢測人員資格認定制度,須通過防雷原理、檢測技術、安全規范等科目的考核,掌握接地電阻測量儀自校方法(如使用標準電阻器驗證儀器精度)、SPD 失效模式識別(如漏電流超過 100μA 時應立即更換)等實操技能。職業道德規范要求檢測人員單獨客觀,禁止出具虛假報告(如將實測 12Ω 的接地電阻篡改至 4Ω 以內),在發現重大安全隱患時(如化工企業防雷接地體腐蝕斷裂),須立即向當地氣象主管部門報告。同時,檢測機構應建立人員能力評估體系,通過盲樣測試(每年不少于 2 次)檢驗檢測人員的數據判讀能力,例...
通信基站分布廣、數量多,且設備對過電壓敏感,其防雷檢測需關注三大主要模塊:天饋系統、電源線路和信號接口。天饋線防雷檢測中,需檢查饋線進出口的防雷接地排是否與基站主接地體可靠連接(過渡電阻<0.01Ω),饋線屏蔽層是否在上下兩端及進入機房前做等電位連接,對于一體化機柜基站,需檢測天線支架與機柜外殼的焊接質量(焊縫長度應≥饋線外徑的 6 倍)。電源系統檢測重點是三級浪涌保護配置:第1級 SPD 安裝在交流配電箱進線端,通流容量需≥40kA(10/350μs 波形);第二級安裝在開關電源輸入端,選擇電壓保護水平≤1.5kV 的模塊;第三級針對直流設備,需檢測其內置 SPD 的鉗位電壓是否與設備耐壓等...
防雷竣工檢測涉及高空作業、電氣檢測等風險操作,需制定專項安全防護方案。高空作業前檢查腳手架、吊籃等登高設備的安全性,作業人員佩戴安全帶并執行 “高掛低用” 原則,在屋頂邊緣設置警示標志。電氣檢測時,先斷開被測系統的電源,驗電確認無電壓后再進行操作,對電涌保護器檢測需先拆除前端斷路器,防止殘余電荷引發觸電。在易燃易爆場所檢測時,使用防爆型對講機和檢測儀器,禁止使用金屬工具敲擊金屬部件,避免產生火花。針對突發天氣,如檢測過程中遇雷雨,立即停止作業并撤離至安全區域,避免在大樹、孤立建筑物下躲避。配備應急急救箱,包含止血包扎用品、防觸電急救設備,作業人員需掌握心肺復蘇等基本急救技能。檢測機構應制定應急...
學校、幼兒園等教育場所人員密集,且電子教學設備(多媒體教室、計算機機房、校園廣播系統)普及度高,防雷檢測需突出 “人員安全優先、設備系統防護并重” 的策略。檢測要點包括:①教學樓屋頂接閃器的保護范圍校核,使用滾球法計算是否覆蓋操場、升旗臺等露天活動區域,避免師生在戶外活動時遭受直擊雷;②教室配電箱的浪涌保護檢測,需確認 SPD 安裝位置是否在進線端 30cm 內,標稱放電電流≥20kA,防止雷電過電壓通過電源線侵入引發觸電風險;③網絡機房和實驗室的等電位連接,要求實驗臺金屬框架、通風櫥外殼與接地干線可靠連接,過渡電阻≤0.03Ω,防止感應雷導致的設備損壞和師生間電位差電擊。常見隱患包括:①宿舍...
等電位連接是防雷系統的重要組成部分,旨在減少建筑物內不同金屬部件之間的電位差,防止雷電反擊。檢測內容包括總等電位端子板(MEB)、局部等電位端子板(LEB)與各類金屬管道、設備外殼、結構鋼筋的連接情況。首先檢查端子板材質、規格及安裝位置,MEB 應設置在進線配電箱附近,LEB 應設置在衛生間、機房等特殊場所。查看連接導體的材質與截面,銅質導體不小于 6mm2,鋼質導體不小于 10mm2,連接方式采用焊接或螺栓連接,焊接長度符合要求,螺栓連接需加防松墊片。對金屬管道,如消防管、給水管、風管等,檢查是否在入戶處與等電位端子板連接,穿越樓層處是否做等電位連接。對于電子信息系統機房,需檢測設備機架、金...
當發生雷擊事故后,專業檢測機構需開展專項檢測,以查明事故原因、評估損失并提出整改措施。檢測流程包括:①現場勘查,記錄雷擊痕跡(如接閃器熔化、SPD 燒焦、設備損壞位置),拍攝全景及細節照片作為證據;②數據回溯,調取受檢單位近三年檢測報告,核查歷史檢測中是否存在漏檢或誤判項目;③性能復測,對受損防雷裝置進行接地電阻、SPD 殘壓等關鍵參數測試,與設計值對比分析;④原因分析,判斷是防雷裝置設計缺陷(如保護范圍不足)、施工質量問題(如焊接點虛焊)還是維護保養缺失(如 SPD 超期服役)導致事故。責任認定環節需嚴格依據檢測數據和標準規范,若發現檢測機構此前報告存在重大疏漏,需依法追究其責任;若為使用單...
古建筑防雷檢測需在保護文物本體的前提下實施,重點關注磚木結構的特殊性。首先核查防雷設計方案是否遵循 “極小干預” 原則,接閃器選型優先采用與建筑風格協調的隱形避雷帶(如銅質鍍銀避雷帶),避免破壞古建筑美學特征。檢測木構件與防雷裝置的絕緣距離,引下線與木質立柱間距應不小于 100mm,或采用絕緣材料隔離,防止雷電反擊引發火災。接地系統檢測需避免破壞文物基礎,優先利用自然接地體(如毛石基礎中的金屬拉結件),確需增設人工接地體時,接地體埋深應大于 1.5m 并遠離文物本體,采用防腐性能優異的銅覆鋼材料。查看防雷裝置與彩繪、木雕等裝飾構件的安全距離,禁止在文物本體上直接焊接引下線,可通過抱箍式夾具固定...
防雷檢測機構作為安全技術服務方,肩負著保護生命財產安全的倫理責任和社會責任,需在實踐中堅守技術良知與公益擔當。倫理責任體現在:①拒絕出具虛假報告,當客戶要求隱瞞接地電阻超標問題時,應依法拒絕并如實記錄;②在檢測方法選擇上,優先采用無損檢測技術(如紅外成像、超聲波測厚),避免對古建筑、文物本體造成物理損傷;③對檢測中發現的重大安全隱患(如易燃易爆場所接地電阻>10Ω),必須立即向當地應急管理部門報告,履行安全預警義務。社會責任實踐包括:①開展公益檢測項目,為偏遠山區學校、老舊小區義務提供防雷安全排查,捐贈簡易防雷裝置;②參與雷電災害應急搶險,在雷擊事故后 24 小時內響應,為受災單位提供義務檢測...
防雷裝置標識是后期維護與管理的重要依據,檢測需確認標識的完整性與規范性。接閃器、引下線、接地體等關鍵部位應設置長期性標識牌,標明 “防雷接地干線”“接閃帶” 等名稱,標識牌材質選用不銹鋼或鋁合金,防止銹蝕。接地測試點需設置明顯標志,距地面 0.5m 處安裝測試盒,盒體標注 “防雷接地測試點” 及編號,便于定期檢測。在易燃易爆場所的防雷裝置附近,需設置 “禁止攀爬”“防雷保護區” 等警示標志,采用反光材料確保夜間可見。檢查引下線與其他管線(如電纜、水管)交叉處的絕緣隔離標識,避免人員誤觸引發安全事故。對于暗敷引下線,需在建筑結構圖上標注走向,并在墻面相應位置設置隱形標識(如在瓷磚縫隙嵌入金屬標記...
隨著電子信息設備的普遍應用,雷電電磁脈沖(LEMP)對系統的干擾成為檢測重點,電磁兼容評估需關注三個層面:①空間屏蔽效能,檢測機房屏蔽體、電纜橋架的導電連續性,使用磁場探頭測量關鍵設備區域的電磁場強度,確保在 100kHz 時場強衰減≥40dB;②線路濾波能力,測試信號線纜的屏蔽層接地電阻(應≤1Ω),評估濾波器對共模、差模干擾的抑制效果,避免雷電過電壓通過線路耦合進入設備;③等電位連接質量,測量設備外殼與接地端子板之間的過渡電阻(≤0.03Ω),確保各金屬部件處于同一電位,防止電位差產生的反擊現象。評估中常發現的問題包括:①弱電機房未設置局部等電位端子板,設備接地呈 “各自為政” 狀態;②視...
完整的防雷檢測流程包括前期準備、現場檢測、數據處理和報告出具四個階段。前期準備階段需收集檢測對象的設計圖紙、防雷裝置竣工資料和歷史檢測報告,制定詳細的檢測方案,準備接地電阻測試儀、浪涌保護器測試儀、紅外熱成像儀等專業設備?,F場檢測環節按照先外部后內部、先直擊雷防護后感應雷防護的原則展開,外部檢測包括接閃器的規格尺寸、銹蝕情況,引下線的間距和連接質量,接地裝置的埋設深度和腐蝕程度;內部檢測則針對 SPD 的安裝位置、型號參數、壓敏電壓等進行測試,同時檢查等電位連接帶的導通性和屏蔽設施的完整性。技術要點在于嚴格遵循檢測方法標準,如接地電阻測量采用四極法以消除土壤電阻率不均勻的影響,SPD 檢測需在...
檢測報告需包含針對性維護建議,指導用戶進行日常保養與定期巡檢。對于接地系統,建議每年雨季前檢查接地測試點螺栓是否松動(力矩值≥40N?m),焊接點防腐層是否剝落(每 5 年重新涂刷防腐漆)。接閃器與引下線的巡檢重點關注銹蝕情況,鍍鋅層破損面積>10% 時及時修補,鋁合金構件表面氧化膜損壞需噴涂導電涂料。SPD 維護需記錄投入使用時間,常規模塊式 SPD 建議 8-10 年更換(依據劣化指示與檢測數據),插拔式 SPD 每 2 年進行一次參數校驗。建議用戶建立防雷裝置管理檔案,收錄檢測報告、產品合格證、維護記錄,重要場所(如醫院、機場)安裝在線監測系統,實時監控接地電阻、SPD 工作狀態。維護實...
檢測機構需建立完善的應急管理體系,針對檢測過程中可能出現的安全事故與數據異常制定預案。高空墜落風險預案,明確作業前安全檢查流程(安全帶承重測試≥225kg)、應急救援通道(與建筑物業提前報備),配備速差自控器與安全繩(極大下滑距離≤1.5m)。電氣事故預案,設置檢測現場監護人(持電工證上崗),配備絕緣檢測儀與干粉滅火器,遇漏電事故時 10 秒內切斷電源并啟動心肺復蘇流程。數據異常處理預案,當接地電阻檢測值波動>20% 時,啟動儀器校準與現場復勘(24 小時內完成),若因接地體銹蝕超標,48 小時內出具整改方案(如加裝接地模塊)。極端天氣預案,雷雨來臨前的三十分鐘停止作業,設備撤離至安全區域(距...
檢測報告是防雷工程質量的法定證明文件,其編制需遵循 "數據準確、結論明確、建議可行" 的原則。報告結構包括封面(需標注 CMA 認證標志、檢測機構編號)、目錄、檢測概況(含檢測依據、環境條件、檢測日期)、檢測項目明細(按接地系統、接閃器等模塊分表列出實測值與標準值)、不合格項分析(注明缺陷位置、違反條款、風險等級)和整改建議(附技術方案示意圖)。數據處理要求原始記錄與報告數據一致,小數點保留位數符合標準(如接地電阻保留兩位小數,單位 Ω),異常數據需標注測量條件(如雨天檢測導致接地電阻偏低,需注明 "檢測時土壤含水率 25%")。報告結論分為 "合格"" 不合格 ""復檢" 三類,當出現接地電...
檢測周期的合理設定是確保防雷裝置有效性的關鍵,需綜合考慮檢測對象的重要性、所處地域的雷暴日數和歷史雷擊風險。根據國家標準,一般建(構)筑物每年檢測一次,易燃易爆場所、人員密集公共建筑每半年檢測一次,高雷暴地區(年平均雷暴日≥60 天)需縮短檢測周期。動態調整原則包括:①對近三年發生過雷擊事故的場所,次年檢測周期縮短 50%;②當檢測對象進行改擴建、防雷裝置維修更換后,需在完工后 30 日內進行專項檢測;③針對氣候變化導致的雷暴日數異常增加,地方氣象部門可發布臨時檢測預警,要求重點單位提前檢測。檢測周期制定需避免兩種誤區:一是過度檢測導致資源浪費,二是周期過長形成安全隱患。實際操作中,檢測機構應...
通信基站分布廣、數量多,且設備對過電壓敏感,其防雷檢測需關注三大主要模塊:天饋系統、電源線路和信號接口。天饋線防雷檢測中,需檢查饋線進出口的防雷接地排是否與基站主接地體可靠連接(過渡電阻<0.01Ω),饋線屏蔽層是否在上下兩端及進入機房前做等電位連接,對于一體化機柜基站,需檢測天線支架與機柜外殼的焊接質量(焊縫長度應≥饋線外徑的 6 倍)。電源系統檢測重點是三級浪涌保護配置:第1級 SPD 安裝在交流配電箱進線端,通流容量需≥40kA(10/350μs 波形);第二級安裝在開關電源輸入端,選擇電壓保護水平≤1.5kV 的模塊;第三級針對直流設備,需檢測其內置 SPD 的鉗位電壓是否與設備耐壓等...
古建筑作為文化遺產的重要載體,具有材質特殊、結構復雜、價值不可再生的特點,其防雷檢測面臨保護與防雷的雙重挑戰。技術難點在于如何在不破壞古建筑原有風貌和結構的前提下,實現有效的防雷保護。檢測時需避免使用破壞性檢測手段,采用紅外成像技術檢測木結構內部的雷擊隱患,使用非金屬材質的接閃器和引下線,如銅合金或碳纖維材料,減少對古建筑外觀的影響。保護原則強調 “極小干預”,接閃器的安裝位置需避開文物本體的重點保護部位,引下線沿墻體隱蔽處敷設,接地裝置采用淺埋式接地模塊或外延式接地體,避免開挖破壞地基。檢測內容除常規防雷設施外,還需評估古建筑所處的地理環境,如是否位于高雷區、周邊是否有高大樹木形成雷電屏蔽效...
農村防雷需結合自建房屋特點,重點檢測簡易接地裝置與接閃器安裝。接地系統檢測,常見問題包括利用樹樁、水管接地,需糾正為人工接地體(扁鋼≥40mm×4mm,埋深≥0.8m),接地電阻≤10Ω(第三類建筑)。接閃器檢測,關注自制避雷針的材料(直徑≥12mm 鍍鋅圓鋼)與高度,采用滾球法計算保護范圍,確保覆蓋屋頂及周邊 3m 內的煙囪、水箱。戶內檢測,確認電度表箱 SPD 安裝(標稱放電電流≥10kA),電話線、電視天線入戶處的過電壓保護,避免雷電沿線路侵入。對于沼氣池、水塔等附屬設施,需檢測其金屬頂蓋接地,接地電阻≤10Ω,防止雷擊引發baozha 。檢測中需向用戶普及防雷知識,如雷雨時遠離外墻、不...
隨著 “雙碳” 目標的推進,新型綠色環保防雷材料(如石墨烯接地體、導電混凝土、復合碳纖維接閃器)的應用日益普遍,其檢測需建立針對性的技術標準。檢測內容包括:①石墨烯接地體的導電性能,測量其在不同濕度下的電阻率(標準值≤5×10??Ω?m)和耐腐蝕性(鹽霧試驗 1000 小時后失重率≤1%);②導電混凝土的骨料配比檢測,通過抗壓強度試驗(≥C30)和導電性能測試(體積電阻率≤10Ω?m),確保接地模塊兼具力學性能與導電穩定性;③復合碳纖維接閃器的抗拉強度檢測(≥3000MPa)和雷電沖擊耐受試驗(100kA 沖擊電流下無斷裂或碳化)。技術標準方面,目前國內尚未形成統一規范,檢測時可參考 ASTM...